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Abstract: Censoring is inevitable in survival analysis. The motivating factor for this article concerns the way censored 

subjects are incorporated in estimation of survival function for grouped data. In practice, the Actuarial estimator of a survival 

function may be biased due to unevenly distribution of censored subjects within intervals. This article presents a nonparametric 

estimation of a survival function using the adjusted Product Limit estimator based on grouped observations that are under 

random censorship. Simulation studies are carried out to assess the performance of the adjusted Product Limit estimator in 

comparison to the performance of Actuarial (life table) estimator to ascertain the one that is better and real data is used to show 

applicability of the method in real life. The results strongly indicate that adjusted Product Limit estimator of the survival 

function outperforms the Actuarial estimator. 
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1. Introduction 

The adjusted Product Limit estimator (APLE), proposed in 

[1], is a flexible model for calculating survival probabilities 

in the presence of ties. It is closely related to Kaplan-Meier 

estimator discussed in [2] and in the presence of ties it gives 

asymptotically correct results. The main line of argument in 

[1] is through a series of examples that show APLE doing a 

commendable work under a variety of situations. 

Problem with estimation of survivor function from 

grouped censored observations has been discussed before by 

several authors both parametrically and non-parametrically. 

Berkson and Gage [3], Culter and Ederer [4], Kaplan and 

Meier [2] proposed life table (actuarial) method which has 

been in use for decades as the standard nonparametric 

method for estimating the survival function when the data is 

grouped. The major limitation of actuarial method is about 

the way censored individuals are handled: the method 

assumes that censored individuals are evenly distributed 

within the interval such that half are censored before and half 

censored after the midpoint of the interval. With this 

assumption only half of the censored individuals are taken to 

be at risk, and as a result actuarial method tends to 

underestimate the true survival function. Though the 

assumption made when using actuarial method might be true 

at one point; however, most survival distributions are often 

skewed or far from normal, it would be a contradiction now 

to assume that censored individuals are evenly distributed 

within any given interval. Breslow and Crowley [5] showed 

that actuarial estimator is consistent if and only if all 

individual, rj, in the j
th

 interval are at risk, and also showed 

that there is a slight overestimation in the variation in the 

estimated survival probability when actuarial estimator is 

used. 

Several models that specify a parametric form for the 

survival distribution in which all censoring occur at the 

midpoint of each interval have been proposed, among others, 

by Elveback [6] and Chiang [7] while other non-parametric 

survival function estimators for interval censored data have 

been proposed by Peto [8], Klein and Moeschberger [9], Sun 

[10], among others. The fact that life table method is the 

most commonly used in practice in estimating survival 

function, see for example in [11, 12], it is an indication that 

there is no any other method among all models proposed in 

literature that can outperform it regardless of it being 

inconsistent and underestimating the true survival function, 

thus there is a need for new statistical techniques in this 

particular area of study. 

The aim of this paper is to estimate survival function using 
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APLE from grouped censored observations so as to 

minimize, if not eliminating, the error incurred when 

actuarial method is used in estimating the survival function. 

Though APLE was developed particularly to estimate 

survival function for ungrouped censored data in the presence 

of ties, it is justifiable to use it on grouped data since it 

incorporates both censored and uncensored individuals in 

calculation of survival probabilities unlike the Kaplan-Meier 

estimator which does not incorporate censored individuals in 

case of ties; An interval in a grouped data set can be taken to 

be equivalent to a tie in ungrouped data set where in both 

cases censored and uncensored individuals are considered. 

In practical situations, the researcher ought to use the most 

accurate estimator available so as to obtain reliable results 

that reflect the real life problems. This paper demonstrates 

that using APLE in estimating survival function from 

grouped censored observations leads to obtaining results with 

high precision than using actuarial estimate and it is 

anticipated that the material presented here will be of greatest 

interest to researchers concerned with life testing and medical 

follow-up studies and also of some interest to demographers 

and actuaries. 

2. Models Description 

This section presents a review of APLE and actuarial 

estimates of the survival function and also a brief description 

of random censorship model. Let dj and cj to be the number of 

individuals that fail and those that were censored, 

respectively, in the j
th

 interval while rj to be the number of 

individuals at risk at the start of the j
th

 interval, then actuarial 

and adjusted product limit estimators are as described below. 

2.1. Actuarial Estimate 

Actuarial estimate (AE) also known as life table estimate 

of the survivor function is one of the oldest method for 

measuring mortality and survivorship of subjects in a 

population. It has been used by actuaries, demographers, and 

medical researchers in studies of survival, length of married 

life and length of working life, among others. It is obtained 

by multiplying together a sequence of estimates of 

conditional probabilities of surviving through intervals, and it 

depends on the selection of the intervals.  

Product Limit (PL) estimate, discussed in [2], is used if all 

failed individuals, dj, are known to precede all censored 

individuals, cj, but if the reverse is true, then reduced sample 

(RS) estimate is used. When the arrangement between event 

and censoring times within the intervals is not known, 

adjustment is made on PL estimate to obtain the actuarial 

estimate on assumption that censored individuals are evenly 

spread in the interval and estimation is done at the midpoint 

of the interval such that only half of the censored individuals 

are at risk of failing. In this way the average number of 

individuals at risk in the j
th

 interval is �� − �� ��  and the 

corresponding probability of surviving in that interval	�	�  is 

then given as �	� = 1 −	 �
�
����
 while PL and RS estimates are 

respectively given as ��� = 1 −	�
�
  and ��� = 1 −	 �
�
��
  for 

details on these estimates see [2]. If no individual fail in j
th
 

interval, dj=0, then �	� = ��� = ��� = 1  and in case no 

individual is censored in j
th

 interval, �	� = ��� = ��� = 1 −	�
�
 
As stated before, Life table method tends to underestimate 

the survival function due to the assumption made concerning 

the distribution of censored individuals within the interval. 

Little [13] suggested a modification of the constant 
�
� in the 

estimate �	� in order to improve its approximation in certain 

circumstances. In the next subsection adjusted Product Limit 

estimate is discussed which also improves the estimation of 

the survival function. 

2.2. Adjusted Product Limit Estimate 

Adjusted Product Limit estimate (APLE) is a form of 

Product Limit estimates that is formed by multiplying 

together a sequence of estimates of conditional probabilities 

of surviving through intervals, thus the method incorporates 

all survival information accumulated up to the termination of 

the study. In forming APLE, estimated probability of failing 

in uncensored set of the data is used to estimate the expected 

number of failures out of the censored set then the overall 

probability of failing in the j
th

 interval is obtained by 

summing the probability of an individual failing when 

censored or failing when uncensored. 

To calculate the probability of an event occurring, it is 

necessary to consider all the ways in which that event can 

happen. The model in Figure 1 is used to illustration all 

possible outcomes for a subject in the j
th

 interval can 

experience and from it the probability of an individual failing 

can be obtained as follows: 

P(failing) = P(uncensored and failing) or P(censored and 

failing)  

Therefore, P(failing) = λ1* λ3 + λ2* λ5; this is by using 

probability theorem for independent events. 

Where λ1=	�
�	�
�
  is the probability of an individual being 

uncensored, λ2= 	�
�
  probability of an individual being 

censored, λ3=	 �
�
�	�
 probability of an individual failing when 

uncensored and λ5=	 �
∗�

��
�	�
���
�	�
� is the probability of failing 

when censored, see [1]. 

Thereafter the result is subtracted from 1 to obtain the 

corresponding probability of surviving in the same interval.  

Probability of surviving in the j
th
 interval, 	�� according to 

the above procedure then is estimated as 

�� = 1 −	������ − ������ − �� + ��
��

����� − ������ − ���  

And the adjusted Product Limit estimator as in [1] is  

Ŝ∗(t) = !1 − d#[�r# − d#��r# − c#� + c#
�]

r#�r# − d#��r# − c#� (#)*
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Figure 1. Probability model showing all possible outcomes. 

If no individual happen to die in interval j then �� = 1 and 

the survival probability stays constant for a whole run of such 

intervals just like the case with life table method, and if no 

individual is censored in interval j then APLE and life table 

method are same. 

2.3. Random Censorship 

Any study on survival analysis should discuss the type, 

causes, and treatment of censoring. Random censoring may 

arise in animal study or medical applications where subjects 

under the study may relocate/migrate to other places or may 

drop out from the study or the study may be terminated 

before some of them experience the event of interest, thus in 

random censoring the researcher can’t tell with certainty 

when the subject in the study might be censored and the 

number of subjects that will be censored. 

Let t1 t2 … tN denotes the true survival times for N 

individuals included in the study assumed to be independent 

and random with a common distribution Function F(t) = P[ti 

≤ t] such that F(0)=0 and let c1 c2 … cN be random variables 

also assumed to be independent with a common distribution 

Function G(c), ti are said to be randomly censored on the 

right by ci when one only observe Ti = min(ti, ci) and ∂i =I[ti ≤ 

ci] where ∂i indicates whether the ti is censored (∂i=0) or not 

(∂i=1) while ti are said to be randomly censored on the left 

when one only observe Ti = max(ti, ci), See [14] for details. 

Since both ti’s and ci’s are assumed to be random samples 

drawn independent of each other, the observed ti’s constitute 

a random sample. 

3. Simulation Study and Discussion 

In this section, to see the performance and compare the 

efficiency of the aforementioned methodologies, simulation 

study is conducted to demonstrate the methods for several 

parameters in different random sample sizes with different 

censoring percentages. Survival times are generated from 

exponential E[δ] and lognormal LN[α,δ] distributions using 

R statistical package [15] while censoring times are 

generated according to uniform distribution U[0, b]. 

Parameter “b” is adjusted to obtain different percentage of 

censoring while parameters “α” and “δ” are adjusted to 

provide different situation in which the mentioned estimators 

are assessed. For each data set, the survival probabilities and 

standard errors for APLE and actuarial method were 

computed and the results are reported in Tables 1-14 and in 

Figures 2-11. The range of the data sets is 25 to 3000 and the 

range of percentage censoring is 34% to 92.3%; though 

several sample sizes were considered in the study, only some 

results are presented for illustration because they are similar 

and since small samples do not necessitate grouping, the 

study based majorly on large sample sizes.  

Results for data generated using exponential distribution 

are reported in Tables 1-8 while that from lognormal 

distribution are reported in Tables 9-14 and in both cases the 

results are similar. That is, adjusted product limit estimates 

are higher than actuarial estimates and standard errors due to 

adjusted product method are smaller than corresponding 

standard error due to actuarial method. Likewise, data 

generated using same distribution but different parameters, 

sample sizes, or different percentage of censoring give 

similar results. For example, Tables 10, 13 and 14 shows 

results for data generated from lognormal distribution with 

different possibilities in terms of size, censoring percentage 

and parameters used, in all the cases adjusted product limit 

estimates have smaller standard errors than actuarial 

estimates, see columns 7 and 8 in the stated Tables for 

details. 

In assessing the goodness of the methods, accuracy in 

estimating survival probabilities was considered and the 

method which provides smaller standard errors was taken to 

be more accurate. Basing on the results in the Tables and 

Figures it can clearly be seen that actuarial method is less 

accurate both for small as well as large sample sizes and also 

for light, moderate as well as heavy censoring. For instance 

in Table 6 a large sample size of 400 is used where 86.8% of 

the subjects are censored (heavy censoring), at time interval 

[0, 1) actuarial method gives a survival probability of 

0.992415 with corresponding standard error of 0.004363 

while APLE gives a survival probability of 0.992496 with 

corresponding standard error of 0.004315 which is an 

improvement both in terms of estimation and accuracy. 

Throughout the study actuarial method gives smaller survival 

probabilities with corresponding larger standard errors as 

compared to APLE, this confirms that actuarial method is 

less precise, thus APLE is a better estimator than actuarial 

method in terms of efficiency. See Tables 1-14 in columns 7 

and 8. 

In case none of the subjects in the j
th

 interval is censored 

the two methods give same results, see for instance Table 1 at 

time interval [0, 1), and if no event occurs in the j
th

 interval 

then the survival probability remain constant, see for 

example Table 2 at intervals [14, 15) and [15, 16). These 

similarities in performance for the two methods shows their 

close relationship but only differs at some points due to the 

way censored subjects are treated by each method; Actuarial 

method can simply be taken to be another form of reduced 

sample estimator, discussed in [2], but for this case it reduces 

the number of subjects at risk in the j
th

 interval by a half of 

the censored subjects only and since reduced sample 

estimator results to an underestimation of the true survival 

function, it is trivial that actuarial method will also result to 
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an underestimation, though not as much as reduced sample 

estimator. For instance, using values in Table 12 at time 

interval [0, 1) 250 individuals entered the interval and out of 

them 84 failed while 8 were censored within the interval; 

reduced sample estimator gives a survival probability of 

0.652893, actuarial method gives 0.658537, while APLE 

gives a survival probability of 0.663465. Using probability 

theorem, probability of failing in the stated interval equals to +,-./�	01	1234/�	3+�353�,246
70724	+,-./�	01	3+�353�,246  =

89
�:;  = 0.336 with corresponding 

probability of surviving 0.664. Reducing the denominator by 

8 (number of censored individuals) causes an increase in the 

probability of failing to 
89
�:;�8= 0.347107 which leads to a 

decrease in the corresponding probability of surviving in the 

same interval. Similarly, a decrease in the corresponding 

probability of surviving is also obtained when the 

denominator is reduced by half the number of censored 

individuals, 
89
�:;�9 = 0.341463, as it is the case with actuarial 

method. Thus, the results reported in this study provide 

empiric evidence of the magnitude of underestimation of the 

actuarial method compared with adjusted product limit 

estimator. It is true the estimated survival probability 0.664 

ought to reduce because some censored individuals might 

fail, but the question is: what magnitude should it reduce by? 

Reducing the denominator by half of the censored individuals 

is not appropriate when the data is under random censorship. 

Consequently, assuming that only half of the censored 

individuals were at risk is unjustified; this is so because all 

censored individuals were observed at the start of the 

interval, thus being at risk of failing and if estimation is done 

at the midpoint of the interval, as it is done by actuarial 

method, then not all failed individuals were at risk since 

some might have failed before midpoint. Also no researcher 

can tell with certainty that exactly half of the censored 

individuals were censored before the midpoint and thus not 

being at risk of failing. From the above example, it is clear 

that actuarial method is unreliable due to its assumptions. 

If the sum of the number of events and the number of 

censored subjects at the largest observational time equals to 

the number of subjects that are at risk at that time then APLE 

estimates goes to zero, see for example Tables 1 and 2; it is 

justifiable to obtain such results since no one is expected to 

live for undefined period of time. Likewise, such results 

might be obtained in situations where subjects that have not 

yet experienced the event of interest at the termination of 

study are killed, like in animal study. In such cases, the 

probability of surviving at the largest observation time and 

beyond ought to be zero. This proves that APLE is generally 

a better estimator than actuarial estimator. 

Table 1. Survival Probabilities and Standard Errors for APLE and Actuarial Method for n=100 with 45% censoring; E [.08]. 

Time interval rj dj cj APLE AE se. APLE se. AE 

[0, 1) 100 6 0 0.940000 0.940000 0.023749 0.023749 

[1, 2) 94 6 3 0.879933 0.879027 0.032504 0.032751 

[2, 3) 85 9 4 0.786521 0.783711 0.041334 0.041864 

[3, 4) 72 8 3 0.698952 0.694779 0.046897 0.047475 

[4, 5) 61 7 3 0.618514 0.613040 0.050377 0.050960 

[5, 6) 51 5 5 0.557159 0.549840 0.052245 0.052967 

[6, 7) 41 1 2 0.543535 0.536094 0.052710 0.053397 

[7, 8) 38 1 3 0.529132 0.521407 0.053232 0.053916 

[8, 9) 34 0 4 0.529132 0.521407 0.053232 0.053916 

[9, 10) 30 2 1 0.493813 0.486057 0.055221 0.055755 

[10, 11) 27 4 1 0.420533 0.412690 0.057903 0.058168 

[11, 12) 22 2 1 0.382212 0.374300 0.058612 0.058751 

[12, 13) 19 2 2 0.341422 0.332711 0.058942 0.059127 

[13, 16) 15 0 3 0.341422 0.332711 0.058942 0.059127 

[16, 17) 12 1 3 0.310384 0.301025 0.060614 0.061402 

[17, 19) 8 0 5 0.310384 0.301025 0.060614 0.061402 

[19, 20) 3 1 2 0.000000 0.150512 NA 0.110768 

NA means not applicable, se.APLE standard error for APLE, se.AE standard error for Actuarial method and E[0.08] exponential distribution with rate 

parameter 0.08. 

Table 2. Survival Probabilities and Standard Errors for APLE and Actuarial Method for n=300 with 44.3% censoring; E [0.08]. 

Time interval rj dj cj APLE AE se.APLE se.AE  

[0, 1) 300 11 7 0.963312 0.962901 0.010854 0.010976  

[1, 2) 282 16 12 0.908547 0.907080 0.016770 0.017040  

[2, 3) 254 17 15 0.847497 0.844523 0.021176 0.021588  

[3, 4) 222 19 8 0.774856 0.770918 0.025067 0.025468  

[4, 5) 195 13 8 0.723102 0.718447 0.027187 0.027581  

[5, 6) 174 9 13 0.685462 0.679844 0.028504 0.028945  

[6, 7) 152 15 9 0.617538 0.610707 0.030584 0.031022  

[7, 8) 128 11 6 0.564335 0.556965 0.031871 0.032247  

[8, 9) 111 12 2 0.503303 0.496205 0.032934 0.033158  

[9, 10) 97 8 6 0.461609 0.453975 0.033329 0.033530  

[10, 11) 83 8 3 0.417050 0.409413 0.033624 0.033737  

[11, 12) 72 9 4 0.364724 0.356774 0.033612 0.033655  



 Biomedical Statistics and Informatics 2016; 1(1): 1-12 5 

 

Time interval rj dj cj APLE AE se.APLE se.AE  

[12, 13) 59 1 4 0.358511 0.350515 0.033606 0.033641  

[13, 14) 54 2 5 0.345103 0.336903 0.033647 0.033684  

[14, 15) 47 3 1 0.323064 0.315167 0.033818 0.033767  

[15, 16) 43 0 2 0.323064 0.315167 0.033818 0.033767  

[16, 17) 41 1 4 0.315099 0.307086 0.033899 0.033855  

[17, 18) 36 2 5 0.297178 0.288752 0.034207 0.034226  

[18, 19) 29 2 3 0.276421 0.267752 0.034788 0.034809  

[19, 20) 24 1 2 0.264812 0.256111 0.035196 0.035198  

[20, 21) 21 2 3 0.238928 0.229843 0.036096 0.036151  

[21, 22) 16 0 3 0.238928 0.229843 0.036096 0.036151  

[22, 23) 13 3 3 0.178829 0.169884 0.039454 0.039996  

[23, 24) 7 2 3 0.104742 0.108108 0.040529 0.043152  

[24, 25) 2 0 2 0.000000 0.108108 NA 0.043152  

Table 3. Survival Probabilities and Standard Errors for APLE and Actuarial Method for n=3000 with 44.4% censoring; E [0.1]. 

Time interval rj dj cj APLE AE se.APLE se.AE 

[0, 1) 3000 120 61 0.959982 0.959589 0.003578 0.003614 

[1, 2) 2819 191 102 0.894844 0.893375 0.005639 0.005717 

[2, 3) 2526 185 119 0.829143 0.826367 0.006991 0.007101 

[3, 4) 2222 160 115 0.769257 0.765282 0.007925 0.008052 

[4, 5) 1947 135 82 0.715812 0.711078 0.008604 0.008729 

[5, 6) 1730 132 85 0.661045 0.655456 0.009168 0.009293 

[6, 7) 1513 124 69 0.606740 0.600483 0.009622 0.009737 

[7, 8) 1320 108 62 0.556972 0.550171 0.009951 0.010053 

[8, 9) 1150 91 64 0.512742 0.505390 0.010180 0.010272 

[9, 10) 995 74 66 0.474414 0.466514 0.010344 0.010429 

[10, 11) 855 60 55 0.440964 0.432688 0.010474 0.010547 

[11, 12) 740 60 63 0.404902 0.396046 0.010593 0.010662 

[12, 13) 617 52 44 0.370573 0.361433 0.010706 0.010757 

[13, 14) 521 37 51 0.343955 0.334444 0.010785 0.010830 

[14, 15) 433 38 43 0.313407 0.303560 0.010894 0.010928 

[15, 16) 352 25 35 0.290885 0.280872 0.010993 0.011013 

[16, 17) 292 20 35 0.270612 0.260408 0.011108 0.011120 

[17, 18) 237 15 23 0.253294 0.243086 0.011252 0.011244 

[18, 19) 199 16 34 0.232149 0.221716 0.011446 0.011455 

[19, 20) 149 6 27 0.222410 0.211898 0.011610 0.011628 

[20, 21) 116 6 21 0.210421 0.199847 0.011933 0.011962 

[21, 22) 89 5 13 0.198287 0.187735 0.012389 0.012403 

[22, 23) 71 6 21 0.179256 0.169117 0.013171 0.013300 

[23, 24) 44 1 19 0.173814 0.164215 0.013587 0.013788 

Table 4. Survival Probabilities and Standard Errors for APLE and Actuarial Method for n=500 with 92.2% censoring; E [0.01]. 

Time interval rj dj cj APLE AE se.APLE se.AE 

[0, 1) 500 2 10 0.995998 0.995960 0.002823 0.002851 

[1, 2) 488 3 19 0.989866 0.989715 0.004507 0.004576 

[2, 3) 466 4 19 0.981354 0.981043 0.006155 0.006262 

[3, 4) 443 2 22 0.976912 0.976501 0.006881 0.007009 

[4, 5) 419 1 20 0.974575 0.974114 0.007249 0.007387 

[5, 6) 398 3 17 0.967215 0.966611 0.008346 0.008506 

[6, 7) 378 2 17 0.962086 0.961379 0.009053 0.009229 

[7, 8) 359 3 20 0.954020 0.953115 0.010101 0.010310 

[8, 9) 336 3 24 0.945455 0.944290 0.011149 0.011404 

[9, 10) 309 2 18 0.939313 0.937995 0.011890 0.012166 

[10, 11) 289 1 16 0.936052 0.934656 0.012286 0.012572 

[11, 12) 272 3 27 0.925614 0.923809 0.013532 0.013899 

[12, 13) 242 2 24 0.917880 0.915776 0.014471 0.014893 

[13, 14) 216 1 22 0.913581 0.911309 0.015021 0.015476 

[14, 15) 193 3 19 0.899226 0.896410 0.016896 0.017451 

[15, 16) 171 1 18 0.893901 0.890877 0.017605 0.018199 

[17, 18) 129 1 8 0.886943 0.883750 0.018788 0.019399 

[18, 19) 120 1 16 0.879399 0.875859 0.020057 0.020769 

[24, 25) 25 1 13 0.823582 0.828516 0.046815 0.050062 
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Table 5. Survival Probabilities and Standard Errors for APLE and Actuarial Method for n=500 with 56% censoring; E [0.05]. 

Time interval rj dj cj APLE AE se.APLE se.AE 

[0, 1) 500 17 11 0.965983 0.965622 0.008107 0.008193 

[1, 2) 472 18 19 0.929080 0.928041 0.011551 0.011722 

[2, 3) 435 20 17 0.886292 0.884522 0.014443 0.014666 

[3, 4) 398 22 21 0.837149 0.834304 0.017014 0.017305 

[4, 5) 355 14 15 0.804070 0.800692 0.018493 0.018796 

[5, 6) 326 13 11 0.771967 0.768214 0.019780 0.020076 

[6, 7) 302 13 18 0.738605 0.734130 0.020970 0.021295 

[7, 8) 271 18 12 0.689439 0.684264 0.022544 0.022863 

[8, 9) 241 10 16 0.660690 0.654897 0.023357 0.023693 

[9, 10) 215 13 8 0.620681 0.614548 0.024433 0.024735 

[10, 11) 194 12 15 0.582023 0.575006 0.025316 0.025643 

[11, 12) 167 6 7 0.561072 0.553905 0.025807 0.026109 

[12, 13) 154 8 6 0.531877 0.524559 0.026444 0.026707 

[13, 14) 140 6 4 0.509062 0.501752 0.026899 0.027121 

[14, 15) 130 4 14 0.493189 0.485435 0.027191 0.027439 

[15, 16) 112 9 10 0.453180 0.444604 0.028038 0.028306 

[16, 17) 93 5 8 0.428607 0.419626 0.028574 0.028835 

[17, 18) 80 4 7 0.406988 0.397685 0.029089 0.029340 

[18, 19) 69 2 8 0.395006 0.385448 0.029422 0.029686 

[19, 20) 59 1 11 0.388020 0.378244 0.029686 0.029993 

[20, 21) 47 1 9 0.379382 0.369344 0.030202 0.030579 

[21, 22) 37 1 8 0.368500 0.358152 0.031128 0.031634 

[22, 23) 28 1 4 0.355014 0.344376 0.032716 0.033282 

[23, 24) 23 1 8 0.336585 0.326251 0.035097 0.036130 

[24, 25) 14 1 9 0.282584 0.291909 0.044252 0.045829 

Table 6. Survival Probabilities and Standard Errors for APLE and Actuarial Method for n=400 with 86.8% censoring; E [0.009]. 

Time interval rj dj cj APLE AE se.APLE se.AE 

[0, 1)  400  3  9  0.992496  0.992415  0.004315  0.004363 

[1, 2)  388  6  14  0.977127  0.976786  0.007533  0.007649 

[2, 3)  368  4  19  0.966476  0.965887  0.009138  0.009304 

[3, 4)  345  7  15  0.946827  0.945854  0.011578  0.011797 

[4, 5)  323  4  17  0.935067  0.933824  0.012837  0.013091 

[5, 6)  302  2  12  0.928864  0.927515  0.013479  0.013741 

[6, 7)  288  4  20  0.915895  0.914169  0.014761  0.015077 

[7, 8)  264  6  11  0.895041  0.892951  0.016697  0.017035 

[8, 9)  247  1  13  0.891407  0.889238  0.017019  0.017364 

[9, 10)  233  3  15  0.879878  0.877407  0.018048  0.018427 

[10, 11)  215  2  20  0.871614  0.868847  0.018792  0.019216 

[12, 13)  184  2  18  0.862038  0.858918  0.019756  0.020238 

[13, 14)  164  3  11  0.846192  0.842661  0.021397  0.021924 

[15, 16)  133  1  10  0.839790  0.836077  0.022167  0.022720 

[16, 17)  122  2  12  0.825873  0.821662  0.023863  0.024508 

[22, 23)  49  3  11  0.771809  0.764996  0.036727  0.038951 

Table 7. Survival Probabilities and Standard Errors for APLE and Actuarial Method for n=800 with 92.3% censoring; E [0.005]. 

Time interval  rj dj cj APLE AE se.APLE se.AE 

[0, 1) 800 1 15 0.998750 0.998738 0.001249 0.001261 

[1, 2) 784 3 33 0.994921 0.994834 0.002531 0.002576 

[2, 3) 748 9 22 0.982939 0.982686 0.004690 0.004762 

[3, 4) 717 7 20 0.973335 0.972956 0.005883 0.005968 

[4, 5) 690 3 28 0.969096 0.968638 0.006345 0.006441 

[5, 6) 659 2 27 0.966149 0.965637 0.006659 0.006762 

[6, 7) 630 2 18 0.963080 0.962527 0.006982 0.007089 

[7, 8) 610 3 20 0.958338 0.957715 0.007465 0.007578 

[8, 9) 587 5 17 0.950168 0.949437 0.008246 0.008368 

[9, 10) 565 2 20 0.946800 0.946016 0.008553 0.008681 

[10, 11) 543 3 27 0.941555 0.940656 0.009025 0.009166 

[11, 12) 513 1 22 0.939716 0.938782 0.009192 0.009338 

[12, 13) 490 3 26 0.933946 0.932878 0.009719 0.009882 

[13, 14) 461 3 22 0.927853 0.926658 0.010271 0.010448 

[14, 15) 436 2 22 0.923586 0.922298 0.010657 0.010844 

[15, 16) 412 2 24 0.919086 0.917686 0.011068 0.011270 

[17, 18) 367 2 16 0.914067 0.912574 0.011561 0.011772 
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Time interval  rj dj cj APLE AE se.APLE se.AE 

[18, 19) 349 1 22 0.911437 0.909874 0.011822 0.012043 

[20, 21) 308 1 18 0.908467 0.906831 0.012150 0.012381 

[22, 23) 274 3 18 0.898474 0.896565 0.013310 0.013586 

[24, 25) 231 1 21 0.894549 0.892499 0.013813 0.014120 

[26, 27) 184 1 23 0.889600 0.887325 0.014582 0.014956 

[29, 30) 117 1 21 0.881696 0.878993 0.016384 0.016978 

[31, 32) 69 1 17 0.867873 0.864464 0.020831 0.022055 

Table 8. Survival Probabilities and Standard Errors for APLE and Actuarial Method for n=200 with 92% censoring; E [0.003]. 

Time interval  rj dj cj APLE AE se.APLE se.AE 

[3, 4) 193 1 4 0.994816 0.994764 0.005169 0.005222 

[4, 5) 188 2 2 0.984232 0.984125 0.009031 0.009093 

[5, 6) 184 1 6 0.978877 0.978688 0.010448 0.010544 

[7, 8) 175 1 8 0.973271 0.972965 0.011794 0.011935 

[9, 10) 161 1 2 0.967225 0.966884 0.013180 0.013319 

[10, 11) 158 1 5 0.961097 0.960666 0.014449 0.014613 

[11, 12) 152 1 6 0.954764 0.954218 0.015679 0.015874 

[12, 13) 145 2 3 0.941589 0.940919 0.018018 0.018227 

[13, 14) 140 1 6 0.934850 0.934051 0.019105 0.019344 

[15, 16) 132 1 11 0.927714 0.926667 0.020239 0.020552 

[16, 18) 120 1 3 0.919978 0.918847 0.021497 0.021816 

[20, 22) 97 1 3 0.910484 0.909226 0.023275 0.023614 

[27, 31) 68 1 3 0.897067 0.895553 0.026512 0.026928 

[40, 42) 26 1 5 0.860921 0.857445 0.042945 0.045334 

Table 9. Survival Probabilities and Standard Errors for APLE and Actuarial Method for n=100 with 42% censoring; LN [1.5, 25]. 

Time interval rj dj cj APLE AE se.APLE se.AE 

[0, 1]  100  55  1  0.449877  0.447236  0.049748  0.049846 

[2, 5]  44  1  0  0.439652  0.437072  0.049657  0.049738 

[6, 12]  43  0  6  0.439652  0.437072  0.049657  0.049738 

[13, 16]  37  1  1  0.427760  0.425097  0.049716  0.049796 

[17, 21]  35  0  4  0.427760  0.425097  0.049716  0.049796 

[22, 24]  31  1  1  0.413946  0.411160  0.049991  0.050076 

Table 10. Survival Probabilities and Standard Errors for APLE and Actuarial Method for n=50 with 52% censoring; LN [1.5, 15]. 

Time interval rj dj cj APLE AE se.APLE se.AE 

[0, 1] 50 19 1 0.619750 0.616162 0.068653 0.069122 

[2, 3] 30 1 1 0.599067 0.595275 0.069404 0.069864 

[4, 5] 28 1 0 0.577672 0.574015 0.070145 0.070529 

[6, 7] 27 0 1 0.577672 0.574015 0.070145 0.070529 

[8, 9] 26 1 0 0.555454 0.551937 0.070879 0.071188 

[10, 34] 25 0 8 0.555454 0.551937 0.070879 0.071188 

[35, 40] 17 1 0 0.522780 0.519471 0.073858 0.074035 

[41, 59] 16 0 4 0.522780 0.519471 0.073858 0.074035 

[60, 62] 12 1 0 0.479215 0.476181 0.079520 0.079520 

Table 11. Survival Probabilities and Standard Errors for APLE and Actuarial Method for n=25 with 40% censoring; LN [1.5, 5]. 

Time interval rj dj cj APLE AE se.APLE se.AE 

[0, 1) 25 10 1 0.598889 0.591837 0.098025 0.099297 

[1, 2) 14 2 0 0.513333 0.507289 0.100978 0.101526 

[2, 3) 12 2 1 0.427000 0.419065 0.100634 0.101237 

[3, 4) 9 0 0 0.427000 0.419065 0.100634 0.101237 

[4, 5) 9 1 1 0.378814 0.369763 0.099994 0.100618 
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Table 12. Survival Probabilities and Standard Errors for APLE and Actuarial Method for n=250 with 51.6% censoring; LN [1.5, 5]. 

Time interval rj dj cj APLE AE se.APLE se.AE 

[0, 1) 250 84 8 0.663465 0.658537 0.029885 0.030234 

[1, 2) 158 16 18 0.595183 0.587821 0.031240 0.031738 

[2, 3) 124 8 17 0.555890 0.547106 0.032055 0.032641 

[3, 4) 99 1 20 0.549985 0.540959 0.032227 0.032848 

[4, 5) 78 5 12 0.513676 0.503392 0.033839 0.034598 

[5, 6) 61 5 14 0.468436 0.456782 0.036051 0.037147 

[6, 7) 42 1 7 0.456902 0.444918 0.036905 0.038029 

[7, 8) 34 0 10 0.456902 0.444918 0.036905 0.038029 

[8, 9) 24 1 10 0.431952 0.421501 0.040821 0.042632 

Table 13. Survival Probabilities and Standard Errors for APLE and Actuarial Method for n=250 with 43% censoring; LN [1.2, 5]. 

Time interval rj dj cj APLE AE se.APLE se.AE 

[0, 1) 250 69 2 0.723975 0.722892 0.028273 0.028364 

[1, 2) 179 27 3 0.614736 0.612931 0.030846 0.030953 

[2, 3) 149 9 4 0.577575 0.575404 0.031368 0.031484 

[3, 4) 136 5 6 0.556295 0.553772 0.031620 0.031752 

[4, 5) 125 4 7 0.538433 0.535541 0.031837 0.031988 

[5, 6) 114 2 4 0.528974 0.525978 0.031972 0.032124 

[6, 7) 108 4 1 0.509381 0.506407 0.032253 0.032385 

[7, 8) 103 5 3 0.484631 0.481461 0.032528 0.032655 

[8, 9) 95 1 3 0.479524 0.476311 0.032584 0.032709 

[9, 10) 91 2 1 0.468984 0.465785 0.032709 0.032822 

[10, 11) 88 1 5 0.463636 0.460337 0.032768 0.032887 

[11, 12) 82 2 3 0.452312 0.448900 0.032931 0.033049 

[12, 13) 77 3 6 0.434569 0.430702 0.033184 0.033338 

[13, 14) 68 2 5 0.421710 0.417551 0.033417 0.033592 

[14, 15) 61 1 4 0.414765 0.410473 0.033577 0.033760 

[16, 17) 53 1 5 0.406861 0.402345 0.033846 0.034056 

[18, 19) 46 2 6 0.388809 0.383631 0.034623 0.034948 

[19, 20) 38 1 4 0.378447 0.372975 0.035198 0.035565 

[27, 28) 7 1 2 0.317175 0.310813 0.060386 0.064020 

Table 14. Survival Probabilities and Standard Errors for APLE and Actuarial Method for n=800 with 34% censoring; LN [0.5, 5]. 

Time interval rj dj cj APLE AE se.APLE se.AE 

[0, 1) 800 328 8 0.589930 0.587940 0.017389 0.017446 

[1, 2) 464 72 17 0.498238 0.495005 0.017724 0.017797 

[2, 3) 375 26 10 0.463666 0.460221 0.017743 0.017806 

[3, 4) 339 22 13 0.433527 0.429770 0.017713 0.017772 

[4, 5) 304 14 8 0.413547 0.409714 0.017683 0.017733 

[5, 6) 282 17 12 0.388566 0.384478 0.017620 0.017665 

[6, 7) 253 5 13 0.380866 0.376680 0.017603 0.017648 

[7, 8) 235 7 8 0.369507 0.365265 0.017594 0.017632 

[8, 9) 220 5 14 0.361072 0.356691 0.017590 0.017631 

[9, 10) 201 2 10 0.357469 0.353051 0.017597 0.017637 

[10, 11) 189 8 8 0.342309 0.337784 0.017647 0.017681 

[11, 12) 173 1 4 0.340329 0.335809 0.017656 0.017688 

[12, 13) 168 2 7 0.336270 0.331726 0.017676 0.017707 

[13, 14) 159 1 10 0.334146 0.329572 0.017691 0.017723 

[14, 15) 148 2 11 0.329603 0.324946 0.017738 0.017773 

[15, 16) 135 4 10 0.319778 0.314948 0.017873 0.017915 

[16, 17) 121 1 14 0.317095 0.312185 0.017920 0.017970 

[17, 18) 106 4 5 0.305100 0.300120 0.018216 0.018260 

[18, 19) 97 3 13 0.295462 0.290171 0.018454 0.018536 

[19, 20) 81 1 6 0.291792 0.286451 0.018584 0.018668 

[20, 21) 74 1 6 0.287820 0.282417 0.018748 0.018836 

[22, 23) 59 1 8 0.282837 0.277282 0.019060 0.019181 

[24, 25) 43 1 6 0.276107 0.270350 0.019734 0.019915 
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Figure 2. Survival curves for APLE and AE for n=25 with 52% censoring; 

E[0.03]. 

 

Figure 3. Survival curves for APLE and AE, for n=300 with 48% censoring; 

E[0.08]. 

 

Figure 4. Survival curves for APLE and AE, for n=3000 with 44.4% 

censoring; E[0.1]. 

 

Figure 5. Survival curves for APLE and AE, for n=500 with 92.2% 

censoring; E[0.01]. 

 

Figure 6. Survival curves for APLE and AE, for n=500 with 56% censoring; 

E[0.05]. 

 

Figure 7. Survival curves for APLE and AE, for n=100 with 42% censoring; 

LN[1.5, 25]. 
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Figure 8. Survival curves for APLE and AE, for n=50 with 52% censoring; 

LN[1.5,15]. 

 

Figure 9. Survival curves for APLE and AE, for n=25 with 40% censoring; 

LN[1.5,5]. 

 

Figure 10. Survival curves for APLE and AE, for n=250 with 51.6% 

censoring; LN[1.5, 5]. 

 

Figure 11. Survival curves for APLE and AE, for n=800 with 34% 

censoring; LN[0.5, 5]. 

4. Application to Real Data 

Leukaemia data given in [16] and data set of 2418 Males 

with Angina Pectoris originally reported by Parker et al. [17] 

and reused in [18], are used for illustration. Table 15 and 

Figure 12 give the results for Leukaemia data while results 

for males with Angina Pectoris are reported in Table 16 and 

in Figure 13. These results for real data lead to similar 

conclusion as in the case of simulated data such that actuarial 

method underestimates the survival function and its results 

are less precise as compared to the results of adjusted product 

limit estimator. For instance, in Table 15 at time interval [6, 

7) actuarial method give a survival probability of 0.853659 

with corresponding standard error of 0.078064 while APLE 

give a survival probability of 0.856746 with corresponding 

standard error of 0.76449 and as mentioned before actuarial 

method assume that only half of the censored individuals are 

at risk and also estimation is done at the midpoint of each 

interval: if this assumption hold then also not all failed 

individuals in interval [6, 7) are at risk because some might 

have failed before the midpoint. From this example, it is clear 

that actuarial method is unreliable and APLE increases the 

accuracy of estimation of the survivor function by giving 

smaller standard errors as compared to actuarial method. 

For large data set like the one reported in Table 16, the 

results still support the use of APLE over actuarial method in 

estimating survival function; the improvement in estimation of 

survival probabilities is significant and will have a significant 

impact on policy/decision making in real life problems. 

Table 15. Survival Probabilities and Standard Errors for APLE and 

Actuarial Method for Leukaemia data set with n=21 with 57% censoring. 

Time 

interval 
rj dj cj APLE AE se.APLE se.AE 

[6, 7) 21 3 1 0.856746 0.853659 0.076449 0.078064 

[7, 8) 17 1 0 0.806349 0.803443 0.086991 0.088155 

[10, 11) 15 1 1 0.752318 0.748033 0.096422 0.097954 

[13, 14) 12 1 0 0.689625 0.685697 0.106842 0.107816 

[16, 18) 11 1 0 0.626932 0.623361 0.114049 0.114627 

[22, 23) 7 1 0 0.537370 0.534310 0.128186 0.128261 

[23, 24) 6 1 0 0.447809 0.445258 0.134519 0.135286 
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Table 16. Survival Probabilities and Standard Errors for APLE and 

Actuarial Method for 2418 Males with Angina Pectoris with 32.8% 

censoring. 

Time 

interval 
rj dj cj APLE AE se.APLE se.AE 

[0, 1) 2418 456 0 0.8114 0.8114 0.0080 0.0080 

[1, 2) 1962 226 39 0.7179 0.7170 0.0092 0.0092 

[2, 3) 1697 152 22 0.6536 0.6524 0.0097 0.0097 

[3, 4) 1523 171 23 0.5802 0.5786 0.0101 0.0101 

[4, 5) 1329 135 24 0.5212 0.5193 0.0103 0.0103 

[5, 6) 1170 125 107 0.4650 0.4611 0.0103 0.0104 

[6, 7) 938 83 133 0.4228 0.4172 0.0103 0.0105 

[7, 8) 722 74 102 0.3783 0.3712 0.0104 0.0106 

[8, 9) 546 51 68 0.3423 0.3342 0.0106 0.0107 

[9, 10) 427 42 64 0.3076 0.2987 0.0107 0.0109 

[10, 11) 321 43 45 0.2653 0.2557 0.0110 0.0111 

[11, 12) 233 34 53 0.2236 0.2136 0.0112 0.0114 

[12, 13) 146 18 33 0.1939 0.1839 0.0116 0.0118 

[13, 14) 95 9 27 0.1733 0.1636 0.0120 0.0123 

[14, 15) 59 6 23 0.1508 0.1429 0.0129 0.0133 

[15, 16) 30 0 30 0.0000 0.1429 NA 0.0133 

 
Figure 12. Survival curves for APLE and AE for Leukaemia data set with 

n=21 & 57% censoring. 

 

Figure 13. Survival curves for APLE and AE for 2418 Males with Angina 

Pectoris & 32.8% censoring. 

5. Conclusion 

This article considered the problem of estimating survival 

function from grouped observations that are under random 

censorship using adjusted product limit estimator. The 

performance of the stated estimator was compared with the 

performance of the actuarial method using simulated data as 

well as using real data and in assessing the results, the 

accuracy of the methods in estimating survival probabilities 

was considered whereby the method that provided smaller 

standard errors was taken to be more accurate. In all sample 

sizes considered in the study, adjusted product limit estimates 

were seen to have higher precision (smaller standard errors) 

than actuarial estimates and thus were preferred over 

actuarial estimates. Basing on the study findings, I urge 

researchers in this field of study and other related fields to 

use the adjusted product limit estimator so as to obtain results 

that are more accurate and also extend the method to 

observations that are under fixed censorship or data 

generated from other life distributions like Weibull among 

others. 
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