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Abstract: Statistical inference is based generally on some estimates that are functions of the data. Bootstrapping procedure 

offers strategies to estimate or approximate the sampling distribution of a statistic. Logistics regression model with binary 

response is commonly used. This paper focuses on the behavior of bootstrapping pseudo - R
2
 measures in logistic regression 

model. Simulation and real data results also presented. We conclude and suggest to use either R
2

M or R
2

D, since they have 

convergence in there values. 
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1. Introduction 

One of the important methods in statistics is that the 

regressing a binary response variable on a set of explanatory 

variables. Binary response variable has two values, typically 

coded 0 for the event did not occur and 1 for the event did 

occur [12]. For the standard linear regression model the 

familiar coefficient of determination, 2R , is a widely used 

goodness of fit measure. The term bootstrap which is due to 

the Efron [5] is an illusion to the expression "pulling on self 

up by one's bootstraps" meaning doing the impossible [6]. 

The bootstrap is a method to derive properties like standard 

error, confidence intervals, of the sampling distribution of 

estimators. The bootstrap resampling consists of n  elements 

that are drawn randomly from the n  original data points with 

replacement [7]. This paper focuses on the behavior of 

bootstrapping pseudo- 2R  measures. Simulation and real 

data results also presented. The contents of this paper may be 

divided into eight sections. In section 2 and 3 we review the 

binary response variable model and pseudo measures, 

respectively. In section 4 we introduce bootstrapping pseudo 
2R . The simulation results, real data results, conclusions and 

references are given in sections 5, 6, 7, and 8, respectively. 

 

2. Binary Response Variable Model 

Binary response is commonly studies in medical and 

epidemiologic research, for instance, the presence or absence 

of a particular disease, death during surgery. Models for 

mutually exclusive binary outcomes focus on the 

determinates of the probability p  of the occurrence of one 

outcome rather than an alternative outcome that occurs with a 

probability of 1 p− . In regression analysis we want to 

measure how the probability 

p  varies across individuals as a function of explanatory 

variables. Binary response variable has two values, typically 

coded 0 for the event did not occur and 1 for the event did 

occur [12]. The expected value of a binary variable is the 

probability that it takes the value 1. 

Let ( 1)
i i

p y π= =  and ( 0) 1
i i

p y π= = − , then 

( ) 0*(1 ) 1* ( 1)
i i i i i

E y p yπ π π= − + = = =              (1) 

With explanatory variables, '
i

x s , 

1 2 0 1 1( ) ( 1 , ,....., ) .....i i i i k k kE y x p y x x x x xπ β β β= = = = + + +   (2) 

Since 
i

π is a probability, it must be between 0 and 1. The 

linear function given in (2) is not an adequate statistical 
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model since the equation (2) can lie outside [ ]0, 1  and dose 

not represent a probability [3]. Binary response models 

directly describe the response probability that the response 

variable takes value 1 is modeled as 

1 2
( ) ( 1 , ,....., ) ( )

i i i k i
E y x p y x x x F x β′= = =           (3) 

A binary response model is referred to as a probit model 

if ( )F ⋅  is the cumulative normal distribution function. It is 

called logit model if ( )F ⋅ is the cumulative logistic 

distribution function. The estimation problem is to 

estimate the unknown parameters β . In practice, the 

ordinary least squares predictions of the conditional 

probability can be greater than one or less than zero [9]. 

The probit model is: 

21

2
1

( ) ( ) ( )
2

i ix x
t

i i iE y x x f t dt e dt

β β

ϕ β
π

′ ′ −

−∞ −∞

′= = =∫ ∫         (4) 

And the logit model is 

( )
1

i

i

x

i i x

e
E y x

e

β

β

′

′=
+

                                (5) 

The probit and logit models are typically estimated by 

maximum likelihood (ML) method. Assuming independence 

across observations, the likelihood function is: 

0 1

( 0 ) ( 1 )
i i

n n

i i i i

i y i y

L p y x p y x
= =

= = =∏ ∏                    (6) 

[ ]
1

1

1 ( ) ( )
i

i

yn
y

i i

i

F w F w

−

=

= −∏                            (7) 

Where ( 1 ) ( ) ( )
i i i i

p y x F w wϕ= = =  in the probit model 

and ( 1 ) ( )
1

i

i

x

i i i x

e
p y x F w

e

β

β

′

′= = =
+

 in the logit model. The 

corresponding Log likelihood function is: 

[ ]
1

log log ( ) (1 ) log (1 ( ))
n

i i i i

i

L y F w y F w
=

= + − −∑          (8) 

The first derivative of (8) is 

1

( ) ( )log
(1 ) 0

( ) ( )

n
i i

i i i

i i i

f w f wL
y y x

F w F wβ =

 −∂ ′= + − = ∂  
∑           (9) 

Solving (9) using an iterative method one can get the 

maximum likelihood estimation of β  [8]. 

3. Pseudo - R
2
 Measures 

For the standard linear regression model the familiar 

coefficient of determination, 2R , is a widely used goodness 

of fit measure. Application of this measure to binary response 

variable model such as logit and probit has no universal 

definition. A number of measures can be proposed. Pseudo-

2R usually have the property that, on specialization to the 

linear model, the coincide with an interpretation of the linear 

model 2R  [1]. Many different Pseudo- 2R measures have 

been proposed in the past four decades [11]. 

3.1. McFadden's Pseudo - R
2
 

McFadden's [13] defines the pseudo- 2R  based on the 

maximum log likelihood, it is: 

2 log ( mod )
1

log ( mod )
M

L Full el
R

L Null el

 
= −  

 
                (10) 

Where the Full model is the model with all variables in the 

model, whereas the null model is the model with intercept 

only. Theoretically the range of this coefficient is between 0 

and 1. 

3.2. Cragg and Uhler Pseudo - R
2
 

Cragg and Uhler [4] introduced a normal version of the 

transformation of the likelihood ratio, it is defined as: 

2/ 2/
2

2/

exp(log ( mod )) exp(log ( mod ))

1 exp(log ( mod ))

n n

CU n

L Full el L Null el
R

L Null el

 −=  − 
  (11) 

3.3. Deviance Pseudo - R
2
 

Mittlbick and Heinzl [14] proposed pseudo 2R measure for 

generalized linear models based on the concept of deviance. 

This measure, 2

D
R , is defined as: 

2 ( mod )
1

( mod )
D

D Full el
R

D Null el
= −                           (12) 

Where D (Full model) is the deviance of the full model, 

and D (Null model) is the deviance of the null model. It 

cannot become negative and increases monotonically with 

increasing number of explanatory variables. 

4. Bootstrap Pseudo - R
2
 

The term bootstrap which is due to the Efron [5] is an 

illusion to the expression "pulling on self up by one's 

bootstraps" meaning doing the impossible [6]. The bootstrap 

is a method to derive properties like standard error, 

confidence intervals, of the sampling distribution of 

estimators. The bootstrap resampling consists of n  elements 

that are drawn randomly from the n original data points with 

replacement [7]. In the term of regression analysis, we have 

two kind of bootstrapping, residual bootstrapping and paired 

bootstrapping. Consider a sample with n  independent 

observations of the response variable y  and 1k +  

explanatory variables x . A paired bootstrap sample is 

obtained by independently drawing rows with replacement 

from the pairs ( ,
i i

y x ). The bootstrap sample has the same 

number of observations, however some observations appear 

several time and others never. The bootstrap involves 

drawing a large number B  of bootstrap samples. An 
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individual bootstrap sample is denoted ( * *,
b b

y x ) [2] 

2( )

2 ( ) 1

B
b

pseudo
boot b

pseudo

R

R
B

==
∑                           (13) 

And 

2( ) 2boot

pseudo pseudo
bias R R= −                          (14) 

5. Simulation Results 

In this section, we examine by simulation the performance 

of the bootstrap procedure based on varies values of B and 

sample sizes of n of the three pseudo measures in section 3. 

Three cases of simulation were done; the first set the value of 

0 1 2
, , andβ β β as 2, 0.5, and 0.5, respectively. The second 

case the parameters' values were 2, 1, and 1 respectively. 

While the third case parameter values were 2, 2, and 2 

respectively. The number of bootstrap samples, B , set to be 

1000, 10000, and 100000 respectively. We simulate different 

sample sizes (10, 25, 50, and 100) from uniform distribution 

with (-1, 1) as explanatory variables and simulate the 

response variable according to logit model. Tables 1, 2, 3, 

and 4 show the results. 

Table 1. Pseudo - 2R  when 10n = . 

B=1000 2

M
R (

2

M
R  

(boot)) 

2
DR  (

2
DR  

(boot) 

2
CUR  (

2
CUR  

(boot)) 0β  1β  2β  

2 0.5 0.5 0.1417 (0.521) 0.1054 (0.505) 0.1417 (0.571) 

1 1 0.045 (0.464) 0.0451 (0.417) 0.026 (0.4029) 

2 2 0.037 (0.181) 0.038 (0.523) 0.0272 (0.1761) 
B=10000 

   
0β  1β  2β  

2 0.5 0.5 0.1417 (0.209) 0.1054 (0.185) 0.1417 (0.21) 
1 1 0.045 (0.426) 0.0451 (0.43) 0.0268 (0.39) 

2 2 0.037 (0.203) 0.038 (0.193) 0.0272 (0.155) 

B=100000 
   

0β  1β  2β  

2 0.5 0.5 0.1417 (0.21) 0.1054 (0.181) 0.1417 (0.209) 

1 1 0.045 (0.425) 0.0451 (0.415) 0.0268 (0.394) 
2 2 0.037 (0.197) 0.038 (0.228) 0.0272 (0.167) 

Table 2. Pseudo - 2R  when 25n = . 

B=1000 2

M
R (

2

M
R  

(boot)) 

2
DR  (

2
DR  

(boot) 

2
CUR  (

2
CUR  

(boot)) 0β  1β  2β  

2 0.5 0.5 0.664 (0.843) 0.665 (0.85) 0.548 (0.794) 

1 1 0.822 (0.922) 0.821 (0.901) 0.742 (0.903) 
2 2 0.253 (0.393) 0.254 (0.464) 0.168 (0.297) 

B=10000 
   

0β  1β  2β  

2 0.5 0.5 0.664 (0.836) 0.665 (0.791) 0.548 (0.803) 

1 1 0.822 (0.931) 0.821 (0.81) 0.742 (0.85) 

2 2 0.253 (0.373) 0.254 (0.45) 0.168 (0.301) 
B=100000 

   
0β  1β  2β  

2 0.5 0.5 0.664 (0.838) 0.665 (0.82) 0.548 (0.771) 
1 1 0.822 (0.925) 0.821 (0.85) 0.742 (0.82) 

2 2 0.253 (0.351) 0.254 (0.395) 0.168 (0.293) 

 

Table 3. Pseudo - 2R  when 50n = . 

B=1000 2

M
R (

2

M
R  

(boot)) 

2
DR  (

2
DR  

(boot) 

2
CUR  (

2
CUR  

(boot)) 0β  1β  2β  

2 0.5 0.5 0.0732 (0.14) 0.073 (0.141) 0.0489 (0.157) 
1 1 0. 22 (0.258) 0.221 (0.263) 0.1316 (0.1677) 

2 2 0.592 (0.642) 0.593 (0.641) 0.458 (0.524) 

B=10000 
   

0β  1β  2β  

2 0.5 0.5 0.0732 (0.143) 0.073 (0.132) 0.0489 (0.155) 

1 1 0. 22 (0.256) 0.221 (0.26) 0.1316 (0.162) 
2 2 0.592 (0.632) 0.593 (0.634) 0.458 (0.519) 

B=100000 
   

0β  1β  2β  

2 0.5 0.5 0.0732 (0.135) 0.073 (0.13) 0.0489 (0.143) 

1 1 0. 22 (0.24) 0.221 (0.252) 0.1316 (0.159) 

2 2 0.592 (0.613) 0.593 (0.62) 0.458 (0.48) 

Table 4. Pseudo - 2R  when 100n = . 

B=1000 2

M
R (

2

M
R  

(boot)) 

2
DR  (

2
DR  

(boot) 

2
CUR  (

2
CUR  

(boot)) 0β  1β  2β  

2 0.5 0.5 0.0129 (0.0425) 0.013 (0.045) 0.009 (0.0307) 

1 1 0. 15 (0.173) 0.151 (0.177) 0.1038 (0.1258) 
2 2 0.375 (0.397) 0.3751 (0.39) 0.248 (0.27) 

B=10000 
   

0β  1β  2β  

2 0.5 0.5 0.0129 (0.0422) 0.013 (0.042) 0.009 (0.0302) 

1 1 0. 15 (0.171) 0.151 (0.175) 0.1038 (0.1248) 

2 2 0.375 (0.389) 0.3751 (0.39) 0.248 (0.255) 
B=100000 

   
0β  1β  2β  

2 0.5 0.5 0.0129 (0.041) 0.013 (0.041) 0.009 (0.0299) 
1 1 0. 15 (0.17) 0.151 (0.171) 0.1038 (0.122) 

2 2 0.375 (0.385) 0.3751 (0.38) 0.248 (0.25) 

From Tables 1, 2, 3, and 4 we observe that the value of the 

pseudo 2

M
R , 2

D
R , and 2

CU
R be larger than the original 

pseudo values and we see the convergency of the pseudo 
2

M
R  and 2

D
R  values. 

6. Real Data Results 

We will use a sample of 30 person from Ibn-Alatheer 

hospital. The response variable be binary with (1 if the 

person diagnostic to has Thalassemia and 0 if not). Nine 

variables have been studied as an explanatory variables, they 

are, sex (1 for male and 0 for female), age, body mass index, 

HB, PCV, ferritin, IL-6, TNF, and uric acid. The results are 

shown in Table 5. 

Table 5. Pseudo - 2R  for the real data. 

 

2

M
R   

(
2

M
R  (boot)) 

2
DR   

(
2

DR  (boot) 

2
CUR   

(
2

CUR  (boot)) 

B=1000 0.584 (0.578) 0.582 (0.614) 0.448 (0. 581) 

B=10000 0.584 (0.611) 0.582 (0.5725) 0.448 (0.484) 
B=100000 0.584 (0.602) 0.582 (0.5713) 0.448 (0.450) 

7. Conclusions 

In this paper, we have shown from Table 1 when the 

sample size is 10 and for all values of B, the values of 
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bootstrapped pseudo measures greatly difference from the 

original values of the pseudo measures, that is the bias is so 

large. This bias gradually be small when the sample size 

change from 25 to 50 and to 100. Furthermore, from Tables 

(1-5) we conclude and suggest to use either 
2

M
R  or 

2

D
R , 

since they have convergence in there values. Moreover, we 

recommended that the bootstrap procedures may be not good 

to verify the asymptotic normal theory since we will get 

constant bootstrap samples contain only 1 or 0. But 

asymptotically of normal theory be met when the sample size 

is more than 50, the results for the real data in Table 5 

support our conclusion. 
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