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Abstract: The measurement of the CD4+ count is the predictor of evolution to AIDS, in ART. Studying the way of the 

CD4+ count over time provides an insight to the disease evolution. The main objective of this study was to apply statistical 

analysis on longitudinally measured CD4+ Cell counts of HIV-positive patients under ART. The study population consists of 

647 HIV+ patients who were 16 years old or older and who were under ART follow up from 2012 to 2017 in Debre Berhan 

Referral Hospital, Debre Berhan, Ethiopia. The data were from the patients' chart. All patients who have initiated to ART and 

measured their CD4+ cell counts at least two times, including the baseline and those who started the first line ART regimen 

class was included in the study population. Data were explored using basic descriptive statistics and individual and mean 

profile plots. The methods of LMM and GLMM were used. The mean profile of CD4+ count revealed that there is an 

improvement in the duration of treatment in a linear pattern. From the GLMM covariates duration of treatment, sex, BMI, 

baseline CD4, regimen class, duration by age, duration by baseline CD4 and duration by regimen class significantly determines 

the change in CD4+ count overtime at 5% level of significance. There is the duration of treatment effect on the current CD4+ 

count. The study result suggests that HIV+ patients attending in ART improve their CD4+ count.  
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1. Introduction 

For decades, scientists and humanitarian aid groups are 

working on pharmaceutical medicine for HIV/AIDS, but still 

not possible. The possible way, which is better than none- is 

treating patients through a clinical treatment called Highly 

Active Anti-Retroviral Therapy (HAART). Since HAART 

prolongs the lifetime of HIV/AIDS patients [1]. In 

clinical/medical studies, it is very common to follow a cohort 

of subjects evolving over a period of time to identify the 

relationship between one or more independent covariates with 

the outcome of interest and the risk of developing a disease. 

After the outcome of interest is identified, it is better to study 

its' evolution over time and the relationship between 

independent covariates and also how the outcome of interest 

related to the risk of the disease.  

There are challenges in identifying the longitudinal 

features of most infectious diseases, but it is better to identify 

the biomarker of HIV/AIDS, since there is a measurement of 

the CD4
+
 count of a disease level and whether it is high risk 

of infection or lower risk of infection. Due to the presence of 

correlated nature of observations in the repeated 

measurements, linear mixed model take into account these 

and can identify the variability of subjects within and 
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between, this study is considered longitudinal analysis.  

2. Methods 

2.1. Data and Variables 

The data used in this study is obtained from Debre Berhan 

Referral Hospital (DBRH), ART clinic. This study used the 

data of HIV/AIDS patients who were undergoing 

Antiretroviral Therapy in the ART clinic of DBRH, Debre 

Berhan, Ethiopia, during the period July 1, 2012, to July 30, 

2015, and were followed up through the ART routine register 

records up to January 31, 2017; taken from patients chart. 

The study population was included HIV-positive adults 

whose age 16 years old and above-initiated ART treatment in 

the hospital. All patients who have initiated to ART and 

measured their CD4+ cell counts at least two times, including 

the baseline and those who started first-line ART regimen 

class was included in the study population. Patients, whose 

age below 16 years old and/or those who started ART before 

July 2012 or after July 2015 were excluded and the CD4+ 

cell counts per mm
3
 of blood were taken approximately in 

every 6 months regardless of their visit to ART clinic. Ethical 

clearance was obtained from Debre Berhan University. 

Response Variable: The response variable used for this 

study was CD4+ T-cells (CD4+ count) for each individual 

measured approximately in every six months interval. For the 

purpose of normalizing the data Square root transformation 

of the CD4 cell counts of observations were used for the 

response variable. 

Independent Variables: The independent variables are 

baseline age, baseline CD4+ count, observation time (in 

months), sex of the patient, marital status of a patient at baseline, 

WHO clinical stage, regimen class of the patient, body mass 

index (BMI) at baseline and functional status of the patient. 

Table 1. Variables used in the Statistical Analysis of Linear Mixed Model. 

No. Variables Description Values’ codes (if any) 

1 Sex Sex of the patient 0=Male and 1=Female 

2 Age Age of the patient (years)  

3 Marst Marital status of a patient 0=Married, 1=Single, 2=Others* 

4 BaseCD4 Baseline CD4+ count  

5 CD4 CD4+ count  

6 BMI Body Mass Index (kg/m2 )  

7 Time Time CD4+ count recorded (months)  

8 WHOSt WHO clinical stage 1=Stage I, 2=Stage II, 3=Stage III, 4=Stage IV 

9 Regcl Regimen class of a patient 0=AZT-3TC-EFV, 1=AZT-3TC-NVP, 2=TDF-3TC-NVP, 3=d4t-3TC-NVP, 4=TDF-3TC-EFV 

10 FuncSt Funcltional status of a patient 0=Working, 1=Ambulatory, 2=Bedridden 

*Others: Widowed/Divorced 

2.2. Linear Mixed Effects Model 

The basic important feature of a longitudinal data (i.e., 

individuals measurements are taken repeatedly through time) 

model is its ability to study changes over time within subjects 

and variations over time among groups. This study deals with 

a longitudinal data in which the CD4+ cell count of patients 

was measured during the ART, taken at six different time 

points in months. The six measurements on the same patient 

are, therefore not independent but correlated and grouped 

within the patient. The response variable CD4+ cell count in 

the data is continuous (when the number of CD4+ counts is 

large, it approximated by continuous) and set of 

measurements on one patient are correlated. Linear mixed 

effects model used to model the change in CD4+ cell count 

over time. Mixed models take into account both the within 

and between sources of variation. Mixed models are flexible 

enough to account for the natural heterogeneity in the 

population and can handle any degree of missing and drop-

out in the data.  

The general form of the linear mixed model is given by: 

Yi=Xiβ +Zibi+εi, i=1, 2, 3,…, n                      (1) 

bi~N (0, D) 

εi~N (0, δ
2
Ini) 

Where; the random effects (bi) and error terms (εi) are 

independent of each other. Yi is the ni-dimensional response 

vector for subject i, 1 <= i <= N, N is the number of subjects, 

Xi and Zi are (ni x p) and (ni x q) dimensional matrices of 

known covariates, respectively; β is a p-dimensional vector 

containing the fixed effects, bi is a q-dimensional vector 

containing the random effects, and εi is an ni-dimensional 

vector of error components, the part of y that is not explained 

by the model. In addition, D is a general (q x q) variance-

covariance matrix. The fixed effect parameter for each 

predictor in the model represents the average change in 

CD4+ cell count for a unit increase in the predictor [2]. 

For model comparison, techniques like Akaike's 

information criterion (AIC), Bayesian information criterion 

(BIC) and Likelihood-ratio test were used. Model estimation 

techniques maximum likelihood (ML) and restricted 

maximum likelihood (REML) were used to estimate the 

covariance parameters. On the next section, statistical 

analysis for the longitudinally measured ART data was 

presented. 

3. Statistical Data Analysis 

In order to answer the objectives of this study, the 

longitudinal measurements of CD4 cell count were taken 

repeatedly from each subject. The total number of patients 
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included in this study was 647. Among the total number of 

patients 423 (65.38%) were females and 224 (34.62%) were 

males. CD4+ cell count score were measured for six 

repeatedly time points (at baseline: before they are under 

ART, Time 1, Time 2, Time 3, Time 4 and Time 5) (in 

months), with values ranging from 5 to 2082 (mean =377.07, 

standard deviation (SD) =275.47), where low count values 

correspond to a patient is at risk, while high scores 

correspond to a better health condition of the patient. At 

baseline the patients CD4+ count with values ranging from 

11 to 1764 (mean =289.22, standard deviation (SD) = 

232.95). 

The loess smooth curve (Figure 1) was suggested that the 

average profile of square root transformed CD4+ count has a 

linear relationship over time. It indicates that square root 

transformed CD4+ counts show a slight increasing pattern, 

but the rate of increase is low after time point three. And also 

it indicates that the linear time effects in the model. We might 

want to consider including a random intercept for each 

individual patient and a random slope for time in our linear 

mixed model (LMM) specification. 

 

Figure 1. Mean Profile. 

The Linear Mixed Effects Model Results 
The descriptive statistics of variables of the data under 

study are shown across time points (not presented here). The 

Shapiro-Wilk test of normality presents the distribution of the 

CD4+ count of the data is suitable for square root 

transformed of CD4+ count, as well as the exploratory data 

analysis with graphical presentation were discussed. The 

unstructured (UN) covariance structure was selected based 

on AIC and BIC model selection criterion. 

After selecting the most appropriate covariance structure 

and significant variables by automatic variable selection, we 

would do in model building is simplifying the mean structure 

of the model. The primary step, we have taken in the model 

building is to evaluate the interactions. The one 

recommended approach is to eliminate the interactions one at 

a time, starting with the least significant interaction. Based 

on this, we have started eliminating from least significant 

interaction effect. We have used the model fit statistics AIC 

and the estimation technique of maximum likelihood (ML) 

estimation method. However; after the final model is chosen; 

refited the model using restricted maximum likelihood 

(REML). REML estimators are more superior. The second 

approach is to compute a likelihood ratio test to compare two 

models; the full model with all of the interactions and the 

reduced model with just a subset of terms of the full model. 

The difference between the -2log likelihoods for the full and 

reduced models is the value of the test statistic. The 

likelihood ratio test comparing the full and reduced models is 

only valid under ML estimation. Using the Unstructured 

(UN) covariance structure, the full model was fitted with all 

of the main effects, the time by main effect interactions, 

which were selected during the univariate analysis and using 

the ML-estimation method. The model reduction procedure 

could be based on Likelihood Ratio Tests (LRT) and AIC 

with corresponding p-values of independent variables. 

To interpret the linear mixed model parameter estimates, 

since our response is square root CD4+ count we have to 

square for the unit change in the factor. When a unit change 

in time (in months) since patients initiated ART, we have that 

the square of the coefficient for time unit increase in CD4+ 

count. 

The reduced fixed effects LMM for square root of CD4+ 

count is given by: 

Sqrt (CD4ij
+
)=β0+β1tij+β2Sexi+β3Agei+β4BMIi+β5FuncSt01i+β6FuncSt12i+β7MarSt01i+β8WHOSt11i+β9WHOSt11i+ 
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β10WHOSt22i+β11WHOSt33i+β12baseCD4i+β13Regcl0ij+β14Regcl1ij+β15Regcl2ij+β16Regcl3ij+(β17Agei+β18WHOSt11i+ 

β19WHOSt22i+β20WHOSt33i)+β21baseCD4i+β22Regcl00i+β23Regcl11i+β24Regcl22i+β25Regcl33i) tij           (2) 

Where; tij, FuncSt0ti, FuncSt12i, MarSt01i, MarSt12i, 

WHOSt11i, WHOSt22i, WHOSt33i, Regcl01i, Regcl12i, 

Regcl23i, Regcl34i are time; functional status: working, 

ambulatory; marital status: married, single; WHO stages: I, 

II, III and the first line ART regimen classes: AZT-3TC-EFV, 

AZT-3TC-NVP, TDF-3TC-NVP and d4t-3TC-NVP; 

respectively. 

Table 2. Parameter Estimate for the Reduced Fixed effect Linear Mixed Model. 

Effect Estimate Std. error 95% CL t-value Pr>|t| 

Intercept 608823 1.6997 (3.5509, 10.2137) 4.05 <.0001 

Time 1.3857 0.4087 (0.5846, 2.1868) 3.39 0.0007* 

Sex (Female) 0.5179 0.4224 (0.3100, 0.8458) 1.23 0.0204* 

Sex (Male) _ _ _ _ _ 

Age 0.0012 0.0233 (-0.0445, 0.0469) 0.05 0.1602 

BMI 0.1232 0.1039 (0.0804, 0.3268) 1.19 0.0063* 

Functional status (Working) -0.2357 0.6493 (-1.5083, 1.0369) -0.36 0.1167 

Functional status (Ambulatory) -0.4455 1.3152 (-3.0233, 2.1323) -0.34 0.1349 

Functional status (Bedridden) _ _ _ _ _ 

Marital Status (Married) 0.4522 0.6146 (-0.7524, 1.6568) 0.74 0.1620 

Marital Status (Single) 0.2945 0.6568 (-0.9928, 1.5818) 0.45 0.1539 

Marital Status (Others) _ _ _ _ _ 

WHO Stage I 1.0232 1.0166 (0.0693, 3.0157) 1.01 0.0144* 

WHO Stage II 0.9909 1.0552 (-1.0773, 3.0591) 0.94 0.0579 

WHO Stage III 0.4383 1.0231 (-1.5670, 2.4436) 0.43 0.0685 

WHO Stage IV _ _ _ _ _ 

BaseCD4 0.0241 0.0009 (0.0224, 0.0259) 27.26 <.0001* 

Regcl (AZT-3TC-EFV) 0.8435 0.7080 (-0.5442, 2.2312) 1.19 0.2338 

Regcl (AZT-3TC-NVP) 0.5709 0.7213 (-0.8428, 1.9846) 0.79 0.4289 

Regcl (TDF-3TC-NVP) -0.0946 0.7301 (-1.5256, 1.3364) -0.13 0.8969 

Regcl (d4t-3TC-NVP) 1.7801 1.6535 (-1.4608, 5.0210 1.08 0.2820 

Regcl (TDF-3TC-EFV) _ _ _ _ _ 

Time*Age -0.0167 0.0055 (-0.0275, -0.0060) -8.05 0.0023* 

Time*WHOStageI -0.3271 0.2497 (-0.8165,- 0.0623) -1.31 0.0104* 

Time*WHOStageII -0.2124 0.2594 (0.0208, 0.2960) -0.82 0.0432* 

Time*WHOStageIII -0.3131 0.2521 (-0.8072, 0.1810) -1.24 0.0545 

Time*BaseCD4 -0.0011 0.0002 (-0.0015, -0.0007) -5.48 <.0001* 

Time* Regcl (AZT-3TC-EFV) 0.0336 0.1660 (-0.2917, 0.3590) 0.20 0.8394 

Time* Regcl (AZT-3TC-NVP) -0.0408 0.1647 (-0.3636, 0.2820) -0.25 0.8045 

Time* Regcl (TDF-3TC-NVP) 0.2880 0.1686 (-0.0425, 0.6185) 1.71 0.0877 

Time* Regcl (d4t-3TC-NVP) 0.2957 0.3793 (0.1477, 1.0437) 1.57 0.0165* 

*Significance at 5% level of significance 

In longitudinal data analysis, which random effect shall be 

included to the model in order to account between individual 

variability is a critical and basic issue. The fixed effect 

model, we have built before is considered with all intercept 

and linear time effect as random part to identify the 

individual level variability at baseline and through time 

progress. In this case, we compared the models by removing 

each random effect one by one using AIC followed by 

likelihood ratio test to choose the best random effects that 

enable to account the between individual variability or to fit 

the ART data well. Therefore; to fit the random effects model 

we have to use all the variables that are selected in the uni-

variate and fixed effects model. The selected variables in the 

uni-variate and fixed effect variable selection are time, sex, 

age, BMI, functional status, marital status, WHO-clinical 

stage, baseline CD4, regimen class and the interaction terms 

of age, WHO-clinical stage, baseline CD4 and regimen class 

with time. 

Random effect models different from marginal or fixed 

effect model; since this includes parameters that are specific 

to the individual subject. Such parameter estimates 

interpreted as the residuals which may be helpful for 

detecting special profiles or groups of individuals evolving 

differently in time point. Since our interest is in the 

prediction of subject-specific evolution the estimates for 

random effects are needed. 

Marginal Testing for the Need of Random Effects Model: 

To select the most appropriate random effect model several 

hierarchical or subject-specific models for studying the 

longitudinal evolution is illustrated and compared: (i) No 

random effects, (ii) Random intercept effects, (iii) Random 

time effects and (iv) Random intercept and time effects.  

By using the mixture-chi-square inference for the variance 

components the results of (Table 3) is obtained. 
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Table 3. Comparison of variance component models with different random effects using mixture chi-square test for the ART data taken at DBRH from 2012-

2017. 

Parameter Model 1 Estimate Model 2 Estimate Model 3 Estimate Model 4 Estimate (s.e) 

Var (intercept) _ 8.8136 _ 1.31 (0.0041) 

Var (time) _ _ 1.0507 0.1716 (0.06416) 

Var (residual) 10.5449 10.5444 11.1566 10.9566 (0.4027) 

-2REML LL 10845.10 10845.10 11299 10817.8 

X2
0:1=286.97, p-value=<.0001; X2

0:2 =353.25, p-value-<.0001; X2
1:2 =239.44, p-value=<.0001; REML LL (Restricted Maximum Likelihood); Model 1=No 

random effects, Model 2= Random intercept effects, Model 3= Random time effects, Model 4= Random intercept and time effects. 

In this case, the need for random intercept was assessed 

with a test based on a mixture of chi-squared distributions. 

The test brings p-value <.0001 indicating that the random 

intercepts are necessary to be included in the model. And 

also, check for the importance of the random slope resulted 

in a p-value <.0001 indicating that the covariance structure 

should not be simplified by deleting the random slopes from 

the model. The model with random intercept and the random 

slope was selected as the final model. So, including the 

random intercept and slope in the model fits the data well 

relative to the marginal or population average model. For 

further illustration, the variance estimate for the intercept 

tells us how much the intercepts vary across subjects and the 

variance estimate for time represents how much the slopes 

for time vary across subjects or variability between subjects. 

The covariance estimate between the intercept and time 

shows how the change in the intercepts affects the slopes of 

time. It indicates whether the CD4+ cell count progression 

over time is affected by the individual subject's CD4+ cell 

count. 

The variance of the random intercepts b0 was estimated as 

1.31, which is small as compared to the within-subject error 

variability estimated as 10.9566. This implied that the 

between-subject variability at baseline is smaller. The mean 

structure of the model remains the same across all models. 

Here; we use the REML estimation method because the 

REML test statistic performed slightly better than the ML 

test statistic. It suggested that REML likelihood could be 

further increased when we add both random intercepts and 

random slope. From these when we correct the boundary 

problem, we have got that a good and simplified covariance 

structure. The test is only correct when the null hypothesis is 

not a boundary value; the need of random effects (intercept 

and time) is more advantageous. 

From the random effect analysis, we have got the G/D 

matrix. Both G and D are the representation of a matrix, 

which consists of the variances and covariances of the 

random effects. G or/and D was/were used interchangeably; 

in some books it was D and in others it was G, especially in 

statistical software: SAS use G and R use D. In our cases we 

had used as "G/D". From the G/D matrix the value in column 

1 and row 1 represents the variance of the intercepts. The 

value in column 2 and row 2 represents the variance of the 

slopes for time. The value in column 2 and row 1 or column 

1 row 2 represents the covariance of the intercepts and the 

slopes of time. 

D = �1.3100 1.8621
1.8621 0.1716� 

The information from the G/D matrix above showed that 

the intercepts and the slopes for the time were positively 

correlated. The residual covariance estimate represents the 

error that remains after the fixed effects and random effects 

were accounted for. This can be represented by the R matrix, 

which has an independent covariance structure. The 

estimated V correlation matrix shows the correlations among 

the measurements for each subject. V matrix can be 

calculated by the formula (V=ZGZ'+R), where; Z matrix has 

time values, the correlations estimated from the V matrix are 

based on the variances and covariances of the random effects 

along with the time values of the measurements [2]. 

The parameter estimates for the random effects represent 

deviations from the fixed effects. Therefore; subject 1 

deviates the magnitude of random intercept from the 

population intercept and the magnitude of the random slope 

from the population slope for time.  

After selecting the appropriate random effects, we had 

assessed the significance of the fixed effects. From the 

reduced final GLMM model the linear effect of time is 

significant. And also sex, BMI, baseline CD4+ cell count and 

regimen class are the significant main effect terms on the 

square root CD4+count. The interaction effect of age, 

baseline CD4+ cell count and regimen class with time are 

among the significant interaction terms. 

From covariance parameter estimates (Table 5), there were 

two estimated variance components; these were the random 

effects variances and the residual variance. We have random 

effects variance bi (i.e., Var (b1i)=d11=1.3100, V ar (b2i) = 

d22=0.1716, cov (b1i, b2i) = d12 =d21 = 1.8621, and residual 

variance: V ar (epsilonit) = sigma
2

R= 10.9566). The results 

showed that the variances and covariances of the random 

effects are significantly different from 0. The variances of the 

intercepts and linear effects of time were significantly 

different from 0. This indicates that the CD4+ cell count 

values at baseline vary across subjects and the change of 

CD4+ cell counts over time vary within subjects. The total 

variability between individuals was estimated as d11 + d12 + 

d22 = 1.310 + 1.8621 + 0.1716 = 3.3437, whereas the total 

variability within individual was 10.9566. However; the total 

variation in Square root CD4+count was estimated to be 

3.3437+10.9566= 14.3003. The proportion of total variability 

that is attributed to within-person variation was given by 

10.9566/14.3003 was 76.62% while the proportion of total 
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variability attributed to between individual variations in their 

general level of square root CD4+count was 3.3437/14.3003 

(23.38%). Therefore; more than three quarters of the 

variation was explained by the residuals. All fixed effects 

parameters in GLMM have the subject specific interpretation, 

unlike the marginal model. Thus, given the random effects 

(b1i); the intercept (beta0
2
= 6.9556

2
 = 48.38) in GLMM is an 

estimate of the "i
th

" male subject average CD4+count 

provided that he is bedridden, widowed/divorced, WHO-

clinical stage-IV and regimen class (TDF-3TC-EFV) 

categories. Similarly, Time (beta1
2
= 1.4912

2
 = 2.22), implies 

the mean CD4+count increases 2.22 times per month for the 

"i
th
" male individual when the remaining variables kept 

constant and it is significantly different from zero (p-value 

<.0001) at 5% significance level. And also, the coefficient for 

sex (beta2 = 0.4417) verifies that the mean CD4+count for 

"i
th
" female individual was 0.20 (beta2

2
 = 0.4417

2
 = 0.20) 

times higher than male individual with the same random 

effects (bi) at baseline and their difference was highly 

significant (p-value<.0115) at 5%. Other parameters are 

interpreted in the same way. But, the interaction of time by 

regimen class (AZT-3TC-EFV) and (AZT-3TC-NVP) and 

time by WHO stage-II were not significant at 5% 

significance level. The main effect terms except for time, sex 

(female), BMI, baseline CD4+ count and Regimen class 

(AZT-3TC-EFV) all others were not significant at 5% 

significance level, indicates do not showed significance 

differentials among groups. 

The final model for generalized linear mixed model 

(GLMM) is given below: 

Sqrt (CD4
+

ij)=β0+β1tij+β2Sexi+β3Agei+β4BMIi+β5WHOSt1i+β6WHOSt2i+β7baseCD4i+β8Regcl0ij+ 

β9Regcl2ij+β10Regcl3ij+(β11Agei+β12WHOSt1i+β13WHOSt2i+β14baseCD4i+β15Regcl0i+β16Regcl2i+β17Regcl3i) tij+b0i+b1itij    (3) 

Where; b0i is the random intercept and b1i is the random slope for the linear effect of time. 

Table 4. Final model for GLMM for the ART data taken at DBRH from 2012-2017. 

Effect Estimate Std.error 95% CI DF t-value Pr>|t| 

Intercept 6.9556 1.3390 (4.3312, 9.5800) 512 6.13 <.0001 

Time 1.4912 0.2991 (0.9050, 2.0774) 515 4.99 <.0001* 

Sex (Female) 0.4417 0.2806 (0.1083, 0.8917) 482 1.57 0.0115* 

Sex (Male) _ _ _ _ _ _ 

Age 0.0018 0.0156 (-0.0288, 0.0324) 482 0.11 0.3099 

BMI 0.1383 0.0693 (0.0025, 0.2741) 482 1.99 0.0064* 

FuncSt (Working) -0.3105 0.4296 (-1.1525, 0.5315) 482 -0.72 0.1708 

FuncSt (Ambulatory) -0.3771 0.8954 (-2.1321, 1.3779) 482 -0.42 0.1737 

FuncSt (Bedridden) _ _ _ _ _ _ 

MarSt (Married) 0.4109 0.4120 (-0.3966, 1.2184) 482 1.00 0.1187 

MarSt (Single) 0.2967 0.4403 (-0.5663, 1.1597) 482 0.67 0.1605 

MarSt (Others) _ _ _ _ _ _ 

WHOStageI 1.0600 0.6707 (-0.2546, 2.3746) 482 1.58 0.1143 

WHOStageII 1.0959 0.6963 (-0.2683, 2.4606) 482 1.57 0.1159 

WHOStageIII 0.4903 0.6750 (-0.8327, 1.8133) 482 0.73 0.4678 

WHOStageIV _ _ _ _ _ _ 

BaseCD4 0.0243 0.0006 (0.0231, 0.0255) 482 40.55 <.0001* 

Regcl (AZT-3TC-EFV) 0.7463 0.0691 (0.6109, 0.8817) 482 1.59 0.0112* 

Regcl (AZT-3TC-NVP) 0.5416 0.4750 (0.3894, 1.4726) 482 1.14 0.0254* 

Regcl (TDF-3TC-NVP) -0.1367 0.4808 (-1.0791, 0.8057) 482 -0.28 0.0776 

Regcl (d4t-3TC-NVP) 1.6486 1.0919 (-0.4915, 3.7887) 482 1.51 0.1314 

Regcl (TDF-3TC-EFV) _ _ _ _ _ _ 

Time*Age -0.0119 0.0043 (-0.0203,-0.0035) 482 -2.77 0.0058* 

Time*WHOStageI 0.2900 0.0663 (0.1601, 0.4199) 482 -1.09 0.0276* 

Time*WHOStageII -0.2032 0.2767 (-0.7455, 0.3391) 482 -0.73 0.4629 

Time*WHOStageIII -0.3008 0.0685 (-0.4351, -0.1665) 482 -1.12 0.0262* 

Time*BaseCD4 -0.0010 0.0002 (-0.0014,- 0.0006) 482 -4.71 <.0001* 

Time*Regcl (AZT-3TC-EFV) 0.0059 0.1546 (-0.2971, 0.3089) 482 0.04 0.1698 

Time*Regcl (AZT-3TC-NVP) 0.0118 0.1722 (-0.3257, 0.3493) 482 0.07 0.2456 

Time*Regcl (TDF-3TC-NVP) 0.3145 0.1763 (0.0310, 0.6600) 482 1.78 0.0451* 

Time*Regcl (d4t-3TC-NVP) 0.4120 0.3652 (0.0138, 0.7652) 482 1.13 0.0259* 

Table 5. Covariance Parameter estimates for the ART data taken at DBRH from 2012-2017. 

Cov Parm Subject Estimate Standard error z-Value P-value 

UN (1, 1) ID 1.3100 0.6034 2.1710 0.0041 

UN (2, 1) ID 1.8621 0.1297 14.3600 <=.0001 

UN (2, 2) ID 0.1716 0.0642 2.6700 0.0037 

Residual  10.9566 0.4027 27.2100 <.0001 

Remark: * Significance at 5% level of significance, functional status (FuncSt), marital status (MarSt), and regimen class (Regcl). 
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Heterogeneity in the R matrix was evident in the model. 

The residual value of 10.9566 corresponds to the variance 

estimate in the R matrix. The results of the Covariance 

Parameter Estimates table showed that the variance of the 

intercepts was a significant, which indicates there was 

significant variation of the intercepts between subjects at 

baseline in CD4+count. The variance of the linear effect of 

time was also significant, which showed that the variances of 

the residuals in the R matrix for the time were significant. So, 

variances appear to be different from each other across time. 

Generally; the main objective of this study was to estimate 

the time progress of the change in CD4+ cell count depletion 

for individual subjects. When we had seen the individual 

profile plots the observed CD4+ count levels were highly 

variable over time. One of the reasons might be due to the 

large residual variability in the error component. Therefore; 

estimating individual profiles without taking it into account 

the error associated with residual variability in CD4+ count 

determinations may lead to unreliable results.  

4. Discussions 

This study was considered on HIV-positive patients 

attending ART and the data obtained from Debre Berhan 

Referral Hospital ART clinic between July 2012 and January 

2017. The data were included, 647 HIV-positive patients. 

Qualitative and quantitative characteristics were used. Linear 

mixed model and generalized linear mixed models were used 

for analysis. Linear mixed model for the marginal evolution; 

the generalized linear mixed model for the subject-specific 

variation analysis purpose were considered.  

In this analysis of the longitudinal data, first, the CD4+ 

cell count measurements are checked for normality using the 

Shapiro-Wilk test of normality and Q-Q plots. The plots 

indicate that there is a deviation from normality and needs 

some transformation. A square root transformation of the 

CD4+ cell counts was selected for the normality of the mean 

response. 

The ART data under study were analyzed using different 

plots (exploratory data analysis) followed by model-based 

outputs. From the profile plots, we observed the existence of 

variability in CD4 count within and between individuals. The 

exploratory analysis result for the mean structure also 

suggested that on average, CD4+ cell count increases in a 

linear pattern over time. This supports the results of [3-4], 

who identified that after patients initiated to ART their CD4+ 

cell count increases due to the treatment. This means that as 

the CD4+ cell count increases the progression of a disease 

decreases since the immune system of a patient develops 

disease resistance. In addition to this, the mean CD4+ cell 

count of a patient for females is higher than males up to time 

54 months and also it is significant over time. Generally, the 

exploratory data analysis of the mean structure supported the 

findings of [3-4], who put as the progression of CD4+ cell 

count increase at a high rate after patients initiated to ART. 

The covariance structure selected for this study is the 

unstructured (UN) based on the minimum (AIC, BIC, and 

AICC). The mean response of the longitudinal square root 

CD4+ cell count is determined and to be linear in time. Then, 

the data are analyzed using both the usual LMM (marginal 

models) and the LMM incorporating patient-specific CD4+ 

cell count variability (subject-specific models)(GLMM). The 

estimated patient-specific variability is significant which 

supports the assumption of heterogeneous variances. The 

LMM that incorporates patient-specific variability (GLMM) 

have smaller AIC than the model assuming homogeneous 

variability (LMM). Next, For the purpose of selecting the 

best random effect that enable to account the variability 

between individuals in GLMM; with no random effect, 

random intercept only, random slope only and both random 

intercept and random slope models were compared using the 

mixture-chi-square test and found that the random effect term 

contains both intercept and slope term is selected, and these 

random effects were included in the model. 

From the final model of GLMM, predictors such as 

duration of treatment, sex, BMI, baseline CD4, regimen class 

main effect terms and duration by age, duration by baseline 

CD4, duration by regimen class interaction effects (p-

value=<.0001, 0.0446, 0.0370, <.0001, 0.0414, 0.0319, 

0.0007, 0.04134; respectively) are among the significant 

predictors of CD4+ cell count progression at 5% significance 

level. It supports by [3] baseline CD4, age and time were 

significant determinants of CD4+ cell count progression but 

contradicts functional status, which was significant but not in 

our case. The significance of sex also supported by [4] and a 

study conducted Tamale Teaching Hospital of Ghana [5], but 

not supported by [6]. 

The importance of early treatment was evident from this 

study. The baseline CD4+ cell count was shown to be 

significantly determining the patient’s disease progression 

following initiation of ART. A higher baseline CD4+ cell 

count results in a better recovery of patients on ART. This 

supports the findings of [6-8]. 

BMI was shown to significantly determine a patient's 

current CD4+ cell count, therefore; a higher baseline BMI 

predicts higher gains in CD4+ cell counts. And also the study 

did not show any functional status and marital status 

differentials. This was contradicted by [6]. However; ART 

regimen class was shown to significantly determine a 

patient's current CD4+ cell count. It was supported by [5] 

results. 

Duration of treatment was among the significant 

determinant factors of the current CD4+ cell count, for 

patients on ART. It means that when the duration of treatment 

was increased patients on ART show improvement of their 

CD4+ cell counts; indicates that a better health condition. 

This result was supported by [3-4]. 

In the analysis of longitudinal data, the information criteria 

techniques (AIC and BIC) and the likelihood ratio tests were 

used for model comparison. The model estimation techniques 

REML and ML methods were used. 

In general, GLMM, the within-subject variation was seen 
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as the deviation between individual observations. Each 

subject had an individual subject-specific intercept and slope. 

Within-subject variations were seen in the magnitude of 

variation in the deviation between the observations and the 

individual trajectory. The between-subject variation was 

represented by the variation among the intercepts, variation 

(b0i) and the variation among subjects in the slopes i.e., 

variation (b1i). The resulting estimated (beta1i) the fixed-

effect parameter for each predictor in this model, represents 

the average change in CD4+ cell count for a unit increase in 

that predictor. 

5. Conclusion 

The main objective of this study was to conduct statistical 

analysis on longitudinally measured CD4+ Cell counts of 

HIV-Positive patients treated under ART clinic. The result 

suggest that factors such as duration of treatment, sex, BMI, 

baseline CD4, regimen class main effect terms and duration 

by age, duration by baseline CD4, duration by regimen class 

interaction effects significantly determine the patient’s 

disease progression following initiation of ART. 

Based on the study results we concluded that patients 

CD4+ cell count was increased at different levels after put on 

ART at a certain initial CD4+ cell count. The determinants of 

CD4+ cell counts as well as the effect of the factors studied 

on patients CD4+ cell count was shown in this study. In this 

study, a generalized linear mixed model (GLMM) for the 

longitudinally measured CD4+ cell count fluctuates on 

HIV/AIDS patients under ART follow up were demonstrated. 

Analysis of the longitudinal CD4+ measurements including 

the subject-specific variability improves significantly the fit 

of the model. The longitudinally measured CD4+ cell counts 

show that variability through time evolution, and concluded 

that HIV/AIDS patients attending in ART improve the CD4+ 

cell count of patients. 
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