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Abstract: A passivity SEIR epidemic model with inconsistent incidence rate embedded with latency period for the 

imparting dynamics of epidemics is succeed and thoroughly inspected. The problem is constructed by a system of nonlinear 

ordinary differential equations analyzing the evaluation of susceptible, exposed, infected and removed individuals. The 

suggested model is established in terms of existence, positivity and boundedness of solutions. Four equilibrium points have 

been discussed, namely, the disease free equilibrium, endemic equilibrium with respect to strain 1, endemic equilibrium 

with respect to strain 2 and the terminal endemic equilibrium with respect to both strains. By constructing the suitable 

stability analysis function the global stability of the disease free equilibrium is proved depending on the basic reproduction 

number. Furthermore by using other well-known functionals the global stability results of the endemic equilibria are 

established depending on the strain 1 reproduction number and strain 2 reproduction number. Necessary numerical 

simulations are performed in order to confirm the theoretical results. Numerical comparison between the model results and 

clinical data was conducted. The findings of this research includes the model consistence of discordant compartments which 

are globally asymptotically stable aseptic equilibrium in state have an epidemiological threshold value (also known as basic 

reproduction rate) less than unity. 
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1. Introduction 

Mathematical models on contagious diseases have been 

extensively used to gain apprehensively into the spread and 

control of crop up diseases. The agitation of these models is 

usually set on by a threshold quantity known as the basic 

reproduction number. The basic reproduction number is 

defined as the number of secondary cases produced by 

completely susceptible populations [1-4, 6]. Categorically 

when less than unity is a small inundation of infected 

individuals, will not generate large outburst and the disease 

will dies out in time. On the other hand when it will exceeds 

unity, the disease will carry on. A basic epidemic model is 

supported by at least two equilibrium, namely disease-free 

and endemic. Several models found in the literature [1, 2, 3, 

8,, 12, 14] have been used to show that when crosses the 

doorway then an asymptotic local stability is transferred from 

the disease-free to endemic state. In some cases it can be 

exhibit that the transfer of asymptotic stability is independent 

of initial conditions, i.e. it is comprehensive [7, 9]. Let 

( ), ( ), ( )S t I t N t  denote the number of susceptible, infected 

individuals and total size of the population at time t  

respectively. Further let ( )Nβ be the average number of 

contacts that is sufficient to transmit infection. Then the force 

of infection given by 
( )N I

N

β
 will represents the average 

number of contacts a susceptible individual makes with 

infectious individuals per unit time. If ( )N Nβ β=  i.e. 

contact rate depends on total population then the incidence 

function 1( )g I Iβ=  is called mass action incidence. If 

( )Nβ β= (a constant) then the incidence function 

2 ( )
I

g I
N

β= is called standard incidence [4-6]. These two 

functions are widely used in modeling the transmission 

dynamics of human diseases [8, 10, 11, 13]. Another widely 

used incidence function is the Holling type II incidence 
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function given by ( ) ( )3
1

I
g I

I

β
ω

=
+  with 0ω >  

2. Model Formulation 

The total population at time t  denoted by  is 

subdivided into five compartments such as susceptible ( )S t , 

exposed ( )E t , uneducated infected individuals ( )uI t , 

educated infected individuals ( )eI t  and recovered 

individuals ( )R t . Thus we have 

( ) ( ) ( ) ( ) ( ) ( )u eN t S t E t I t I t R t= + + + +               (1) 

The susceptible population is increased by the recruitment 

of individuals into the population at a rate π . Susceptible 

individuals may acquire infection from following effective 

contact with infected individuals at a rate ( )tλ , where 

( )
1 21 1

u e

u e

I I
t

I I

ηλ β
α α

 
= + + + 

                      (2) 

In (2) is the effective contact rate while the modification 

parameter 0 1η< <  accounts for the assumed depletion in 

disease channeling by educated infected individuals in 

comparison to uneducated infected individuals in the uI  

class. The population of susceptible individuals is further 

decreased by natural death. Thus the rate of change of the 

susceptible population is given by 

( ) ( )dS
t S t

dt
π µ λ = − +                          (3) 

The population of exposed individuals is generated by the 

infection of susceptible individuals at a rate of ( )tλ . This 

population is decreased by development of disease symptoms 

at a rate κ and natural death at a rate µ  so that 

( ) ( ) ( ) ( )dE
t S t E t

dt
λ κ µ= − +                     (4) 

The population of uneducated infected individuals is 

generated at a rate κ . It is decreased by natural recovery at a 

rate 1γ , education at a rate σ , natural death at a rate µ  and 

disease-induced death at a rate 1δ . This gives 

( ) ( ) ( )1 1
u

u

dI
E t I t

dt
κ σ γ µ δ= − + + +           (5) 

The population of educated infected individuals is 

generated by the education of infected individuals at a rate of

σ . This population is decreased by recovery at a rate 2γ , 

natural death at a rate µ and disease-induced death at a rate

2 1δ δ< . It is assumed that the disease persuade mortality rate 

of educated infected individuals is lower than uneducated 

infected individuals. Hence the rate of change of this 

population will be given by 

( ) ( ) ( )2 2
e

u e

dI
I t I t

dt
σ γ µ δ= − + +                 (6) 

Finally the population of recovered individuals is 

generated by the recovery of uneducated and educated 

infected individuals at rates 1γ  and 2γ  respectively. 

It is decreased by natural death at a rate µ  so that 

( ) ( ) ( )1 2u e

dR
I t I t R t

dt
γ γ µ= + −                (7) 

Thus the model for the transmission dynamics of an 

infectious disease in the presence of educated infected 

individuals is given by the following nonlinear systems of 

differential equations: 

( ) ( )

( ) ( ) [ ] ( )

( ) [ ] ( )

( ) [ ] ( )

( ) ( ) ( )

1 1

2 2

1 2

u
u

u
u e

u e

dS
t S t

dt

dE
t S t E t

dt

dI
E t I t

dt

dI
I t I t

dt

dR
I t I t R t

dt

π µ λ

λ µ κ

κ µ σ γ δ

σ µ γ δ

γ γ µ


 = − +  


= − + 

= − + + + 



= − + + 

= + − 

             (8) 

2.1. Basic Properties 

Since the model (8) monitors human populations, all its 

associated parameters are nonnegative. Further the following 

nonnegative result holds. 

Theorem 1 

The variable of the model (8) are nonnegative for all the 

time. In other words, solutions of the system (8) with positive 

initial data will remain positive for all the time 0t >  

Proof. Let

[ ]{ }1 0 : 0, 0, 0, 0, 0 0,u et Sup t S E I I R t= > > > > > > ∈ , thus 

1 0t >  

Now it follows from the first equation of the system (8) 

that 

( ) ( ) ( ) ( ) ( )dS
t S t S t S t

dt
π λ µ π λ µ= − − ≥ − +            (9) 

This can be rewritten as 

 

( )tN
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( ) ( ) ( )
0 0

exp exp

t t
d

S t t d t d
dt

µ λ τ τ π µ λ τ τ
        + ≥ +   
        

∫ ∫                                                (10) 

Hence 

( ) ( ) ( ) ( )
1

1 1

0 0 0

exp 0 exp

t yt

S t t d S y d dyµ λ τ τ π µ λ τ τ
     + − ≥ +   

      
∫ ∫ ∫                                           (11) 

So that 

( ) ( ) ( ) ( ) ( )
1 1

1 1

0 0 0 0

0 exp exp exp 0

t t yt

S t S t d t d y d dyµ λ τ τ µ λ τ τ π µ λ τ τ
           ≥ − − − − + >                 

∫ ∫ ∫ ∫                    (12) 

similarly it can be shown that 0, 0, 0u eE I I> > >  and 0R >  

for all time 0t >  

2.2. Lemma 1 

The closed set 

( ) 5, , , , :u e u eS E I I R S E I I R
π
µ+

 
ℑ = ∈ ℜ + + + + ≤ 

 
 

Proof. Summing up all the equations of the model (8) 

gives, 

( )1 2u e

dN
N I I

dt
π µ δ δ= − − +                  (13) 

Since
dN

N
dt

π µ≤ − , it follows that 0
dN

dt
≤  if N

π
µ

≥ . 

Thus a standard comparison theorem can be used to show 

that ( )0 1t tN N e eµ µπ
µ

− − 
≤ + − 

 
. In particular ( )N t

π
µ

≤  if

( )0N
π
µ

≤ . Thus the region ℑ  is positively invariant. 

Further if ( )0N
π
µ

>  then either the solution enter in ℑ  for 

infinite time or ( )N t  approaches 
π
µ

 asymptotically. Hence 

the region ℑ  attracts all solutions in 5
+ℜ . Since the region ℑ

is positively invariant, it is sufficient to consider the 

dynamics of the flow generated by the model (8) in ℑ . 

3. Local Stability of Disease-Free 

Equilibrium 

The disease free equilibrium of the model (8) is given by 

( )* * * * *
0 , , , , ,0,0,0,0u eS E I I R

πε
µ

 
= =  

 
             (14) 

The local stability of 0ε  will be explored by using the next 

generation operator method. The nonnegative matrix F of the 

new infection terms and the M-matrix V of the transition 

terms associated with the model (8) is given by 

1 1

2 2

0
0 0

0 0 0 , 0

0 0 0 0

F V

βπ ηβπ
µ κµ µ
κ µ σ γ δ

σ µ γ δ

 
  +    
 = = − + + + 
   − + +  
 
 

                                         (15) 

respectively. 

It follows that the control reproduction number denoted by 

( )1
0 FVρ −ℜ =  where ρ  is the spectral radius, is given by 

( )3
0

1 2 3

k

k k k

βπκ ησ
µ

+
ℜ =                         (16) 

Where 

1 2 1 1 3 2 2, ,k k kµ κ µ σ γ δ µ γ δ= + = + + + = + +          (17) 

3.1. Lemma 2 

The disease-free equilibrium of the system (8) given by 

(14) is locally asymptotically stable if 0 1ℜ <  

The quantity 0ℜ  measures the average number of new 

infections generated by a single infected individual in a 

population. Lemma 2 implies that the disease can be 

eliminated from the community ( )0When 1ℜ <  if the initial 

sizes of the subpopulations of the model are in the basin of 

attraction of the disease-free equilibrium ( )0ε  
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3.2. Global Stability of Disease-Free Equilibrium 

Theorem 2 

The disease-free equilibrium of the model (8) given by 

(14) is globally asymptotically stable in ℑ whenever 0 1ℜ ≤  

Proof: Consider the following Lyapunov function: 

( )3 3

1 2 2
u e

k k
E I I

k k k

κ ησ ησ
η η

 +  +
℘ = + +   

    
           (18) 

With Lyapunov derivative given by 

( ) ( )

( ) ( )

( )( )

3 33
1

1 2 2 1 2 1 2

33 3
2 3 1 2

2 1 2 2

3
3 0

1 1

1

u e
u e

u e

u u e u e u

u e u e

k kk I I
E I I S k E

k k k k k I I

kk k
E k I I k I I I k E E k I

k k k k

k
I k I R I I

κ ησ κ ησησ ηβ
η η η α α

κ ησησ ησβπκ σ η κ
η η µ η

σ η
η

  + +   +
℘ = + + = + −      + +         

++   +
+ − + − ≤ + − + −       

 

+ − = − +

            (19) 

Since all the parameters and variables of the model (8) are 

nonnegative, it follows that 

0℘≤ for 0 1ℜ ≤  with 0℘= if and only if 0u eE I I= = = . 

Hence℘  is a Lyapunov function on ℑ . Therefore the largest 

compact invariant subset of the set where 0℘= is the 

singleton set ( ) ( ){ }, , 0, 0, 0u eE I I = . Thus it follows by the 

LaSalle’s invariance principle that 

( ) ( ), , 0,0,0u eE I I →  as t → ∞                  (20) 

Since lim sup 0u
t

I
→∞

=  and lim sup 0e
t

I
→∞

= , it follows that 

for sufficiently small * 0ω > there exist constants 

1 2. 0M M >  such that 
*lim sup u

t
I ω

→∞
≤  for all 1t M>  and

*lim sup e
t

I ω
→∞

≤  for all 2t M> . Hence it follows from the 

last equation of (8) that for { }1 2, ,t Max M M>  

* *
1 2R Rγ ω γ ω µ≤ + −                          (21) 

Thus by comparison theorem we have 

* *
1 2lim sup

t
R R

γ ω γ ω
µ

∞

→∞

+
= ≤                  (22) 

So that by letting 

* 0, lim 0
t

R SupRω ∞

→∞
→ = ≤                     (23) 

Similarly it can be shown that 

lim inf 0
t

R R∞ →∞
= ≥                           (24) 

Thus it follows from (23) & (24) that 

0R R∞
∞ ≥ ≥                                (25) 

Hence 

lim 0
t

R
→∞

=                                  (26) 

similarly ( )lim
t

S t
π
µ→∞

=                        (27) 

Thus by combining (20), (26) & (27) it follows that every 

solutions of the equations of the model (8) with initial 

conditions in ℑ  approaches to 0ε  as t → ∞  (for 0 1ℜ < ). 

4. Existence and Stability for Endemic 

Equilibrium Point 

In this section the possible existence and stability of 

endemic equilibrium of the model (8) has been explored. The 

system (8) is said to be uniformly persistent if there exists a 

constant c such that any solution of 

( ) ( ) ( ) ( ) ( )( ), , , ,u eS t E t I t I t R t  satisfies 

( ) ( ) ( ) ( ) ( )lim inf , lim inf , lim inf , lim inf , lim infu e
t t t t t

S t c E t c I t c I t c R t c
→∞ →∞ →∞ →∞ →∞

≥ ≥ ≥ ≥ ≥                         (28) 

provided ( ) ( ) ( ) ( ) ( )( )0 , 0 , 0 , 0 , 0u eS E I I R ∈ ℑ  

Theorem 3. System (8) is uniformly persistent in ℑ  if and 

only if 0 1ℜ >  

Proof: The theorem can be proved by applying a uniform 

persistent result in [15] and noting the fact that the disease-

free equilibrium of the model (8) is unstable whenever

0 1ℜ > . When 0 1ℜ >  it follows from lemma 2 that model 

(8) is uniformly persistent. 

5. Conclusions 

In this paper global stability of two strain epidemic Model 

have been studied with two general incidence functions. 

Existence, boundedness and positivity of solutions have been 

studied The disease free equilibrium, endemic equilibrium 
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with respect to strain 1, endemic equilibrium with respect to 

strain 2 and endemic equilibrium with respect to both the 

strains are calculated. 

Findings of this research are as follows: 

i). The model (8) has a locally stable disease-free 

equilibrium whenever the associated reproduction 

number is less than unity. 

ii). The disease-free equilibrium of the model (8) is shown 

to be globally asymptotically stable when 0 1ℜ ≤  

iii). The model (8) is uniformly persistent in ℑ if and only 

if 0 1ℜ >  
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